

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced GCE

CHEMISTRY 2814

Chains, Rings and Spectroscopy

Wednesday

19 JUNE 2002

Afternoon

1 hour 30 minutes

Candidates answer on the question paper Additional materials.

Data Sheet for Chemistry
Scientific calculator

Candidate Name	Centre Number	Candidate Number

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE			
Qu.	Max.	Mark	
1	10		
2	11		
3	10		
4	6		
5	14		
6	15		
7	12		
8	12		
TOTAL	90		

1	A ke	etone A has the molecular formula C ₃ H ₆ O.
	(a)	Name A and draw its structure to show clearly its functional group.
		name
		structure:
		[2]
	(b)	Ketone A can be reduced to an alcohol, B.
		(i) Name B and draw its structure.
		name
		structure:
		[2]
		(ii) State a suitable reagent for this reduction.
		[1]
		(iii) Write a balanced equation for the reduction of A to B . You may use the symbol [H] in this redox reaction to represent the reducing agent.
		[1]
	(c)	Describe a chemical method to detect the presence of a carbonyl group in a compound such as A . Explain how you would use the product from this chemical method to identify A .
		[4] [Total : 10]

2814 Jun02

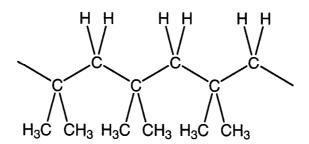
2	The reaction of benzene with bromine requires a halogen carrier but the reaction of phenol with bromine does not.		
	(a)	(i)	Write the equation for the reaction of benzene with bromine.
		(ii)	State a substance that will act as the halogen carrier for this reaction. [1]
	(b)	The	reaction of phenol with excess bromine gives the organic product C .
		(i)	Draw the structure of C .
		(II)	[2] Cold aqueous NaOH is added to compound C . Using structural formulae, predict the equation for the reaction that takes place.
		(iii)	[2] Explain why the reaction of phenol with bromine does not require a halogen carrier.
			[3]
		(iv)	State a general use for halogenated phenols.
			[1]
			[Total : 11]

3 A commercial synthesis of the ester **G** is shown below.

C ₆	H ₅ CH	₂ C <i>l</i> ———stage I	→ C ₆ H ₅ CH ₂ OH -	CH ₃ COOH, conc. H ₂ SO ₄ stage II	► C ₆ H ₅ CH ₂ COOCH ₃	
	E		F		G	
(a)	Stag	e I: Suggest a suitabl	e reagent.			
	(ii)	State the type of ı	eaction occurring.			
	(iii)	Write the equation	n for this reaction.			
(b)	Stag		ed formula for the este	er G .		
	(ii)	Write the equation	n.			[1]

(iv) **G** can also be made directly from **E** by reaction with CH₃COO⁻Na⁺. Suggest a possible mechanism for this reaction.

......[1]


(iii) Suggest a general use for esters such as G.

[3]

[Total: 10]

4	Describe the synthesis of a diazonium salt from phenylamine. Explain why diazonium salts are important.
	[6]
	[Total : 6]

5 (a) A section of a polymer has the structure shown below.

- (i) Circle a repeat unit of this polymer on the diagram above. [1](ii) Deduce the empirical formula of this polymer.
- (iii) Draw a structure for a monomer from which this polymer could be made. Your structure should show any multiple bonds.

......[1]

[1]

- (b) Proteins are natural polymers made from $\alpha\text{-amino}$ acids, such as glycine, $\text{H}_2\text{NCH}_2\text{COOH}.$
 - (i) Name the functional group made during amino acid polymerisation and draw its displayed formula.

name of functional group

displayed formula of functional group:

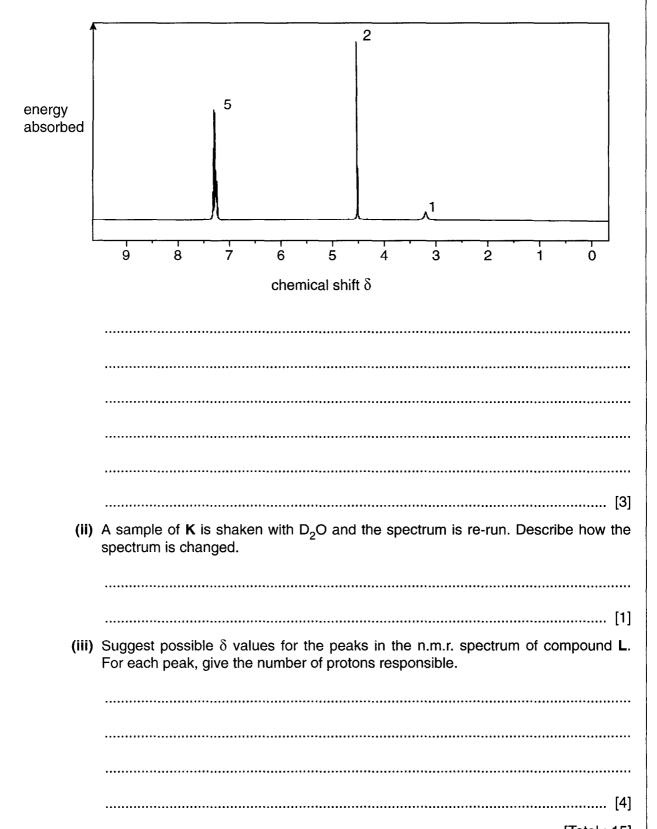
[2]

(ii) Name this type of polymerisation reaction.

.....[1]

	displayed formula of H	
l		
	skeletal formula of H	
	A student made 1.10 g of dipeptide H starting from 1.40 g of glycine. Calculate the percentage yield obtained. Give your answer to 3 significant fig	gur
		gur
		gur
		gui
		gui
		gui

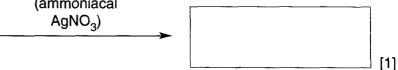
[2]

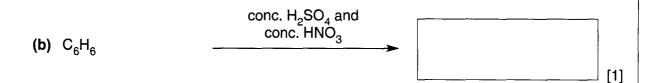

[Total : 14]

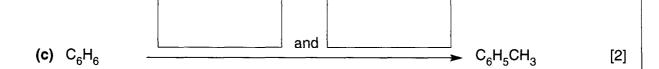
6 Compounds **K** and **L** are structural isomers.

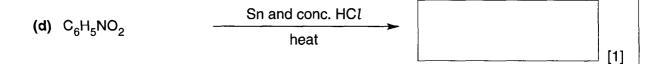
CH ₂ OH	oсн _з
\bigcirc	\bigcirc
K	L

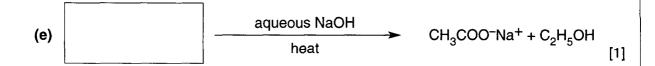
			\bigcirc
		К	L
(a)	(i)	What is the molecular formula of these isome	ers?
			[1]
	(ii)	Calculate the mass:charge ratio, m/e, you exmass spectrum of K , showing your working.	xpect for the molecular ion peak in the
		Answe	ər[1]
	(III)	A sample of L is sent for analysis to determ and hydrogen. Calculate the expected result	ine its percentage by mass of carbon s.
		%C	
		%Н	
			[2]
(b)	Expl and	olain how infra-red spectra would allow you t	to distinguish between samples of K
	•••••		


(c) (i) Compound K gives the n.m.r. spectrum below. Identify which of the protons are responsible for each peak. Explain your reasoning.




[Total : 15]


7 Complete the reaction schemes below. Draw the structural formula of an appropriate organic compound, or give a suitable reagent, in each of the boxes provided.


Tollen's reagent (ammoniacal AgNO₃)

		HCN and KCN	
(f)	(i) CH ₃ COCH ₃		

(ii) Describe the mechanism for the reaction in (f)(i) above. State the name for this type of mechanism.

[Total: 12]

8

In this question, two marks are available for the quality of written communication.			
Explain the different types of isomerism encountered in organic chemistry.			
Outline the importance of stereoisomerism in the synthesis and use of compounds as pharmaceuticals.			
In your answer use diagrams of suitable examples to illustrate both structural isomerism and stereoisomerism.			
[10]			
Quality of Written Communication [2]			

[Total : 12]

Mark Scheme	Unit Code	Session	Year	Final Version
Page 1 of 8	2814	June	2002	

Qu.	Expected answers:	Marks
1 (a)	propanone HOHHHC-C-C-C-HH	[2]
(b) (i)	propan-2-ol ✓ H OH H H — C — C — H H H H H	
	н н н _у	[2]
(ii)	NaBH₄ ✓	[1]
(iii)	$C_3H_6O + 2[H] \longrightarrow C_3H_8O / C_3H_7OH \checkmark$	[1]
(c)	2,4-dinitrophenylhydrazine ✓ yellow / orange/red crystals /solid / ppt. etc ✓ (re)crystallise / purify ✓ measure melting point/m.p. (of product) ✓ compare with known compounds ✓	
	ANY 4 out of 5	max [4]
		[Total: 10]

Mark Scheme	Unit Code	Session	Year	Final Version
Page 2 of 8	2814	June	2002	

Qu.	Expected answers:	Marks
2 (a) (i)	$C_6H_6 + Br_2 \longrightarrow C_6H_5Br + HBr$ organic product \checkmark rest of the equation also correct \checkmark	[2]
(ii)	FeBr ₃ / AlBr ₃ / iron(III)bromide / aluminium bromide	[1]
(b) (i)	OH Br Br	[2]
(ii)	O^{-} Na $^{+}$ H ₂ O O^{-} Na $^{+}$ H ₂ O	1-7
	organic product ✓ (allow ecf from (i) but must be a ring with OH) rest of the equation also correct ✓	[2]
(iii)	(benzene) ring is <u>activated</u> \checkmark lone pair on oxygen is delocalised / interacts with the π electrons \checkmark more (π) electron density (around ring) \checkmark attracts bromine / electrophiles more / polarises Br_2 molecule more \checkmark	
	ANY 3 marks from 4	max [3]
(iv)	antiseptics / disinfectants	[1]
		[Total: 11]

Mark Scheme	Unit Code	Session	Year	Final Version
Page 3 of 8	2814	June	2002	

Qu.	Expected answers:	Marks
3 (a) (i)	NaOH / KOH / OH ⁻ / H ₂ O ✓	[1]
(ii)	nucleophilic ✓ substitution ✓	[2]
(iii) $C_6H_5CH_2CI + NaOH \longrightarrow C_6H_5CH_2OH + NaCI$	
	$/ OH^{-} \longrightarrow CI^{-}$ if water in (i), then: $H_{2}O \longrightarrow HCI$	[1]
(b) (i)	allow either $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[1]
(ii)	$C_6H_5CH_2OH + CH_3COOH \longrightarrow CH_3COOCH_2C_6H_5 + H_2O \checkmark$ allow $C_6H_5CH_2COOCH_3$ as the ester	[1]
(iii	perfumes / flavourings / solvents 🗸	[1]
(iv) suggested mechanisms could be $S_{\text{N}}1$ or $S_{\text{N}}2$ type (such as the example shown below)	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	look for diagram or words describing: nucleophilic ✓ substitution / ester + Cl ¯ as products ✓ dipole on C-Cl bond ✓ curly arrow from COO¯ to C ✓ curly arrow from bond to Cl ✓	

ANY 3 out of 5

max [3]

(allow anything reasonable producing $C_6H_5CH_2COOCH_3$)

[Total: 10]

Mark Scheme	Unit Code	Session	Year	Final Version
Page 4 of 8	2814	June	2002	

Qu.	Expected answers:		Marks
4	(at a temperature) < 10° ✓	ESSENTIAL mark	[1]
	(reagent is) nitrous acid / HNO₂ ✓ (made by) sodium nitrite / NaNO₂ ✓ (with) hydrochloric acid / HCl ✓ (to give diazonium salt with formula) eg	$C_6H_5N_2^+ / C_6H_5N_2CI / C_6H_5N^+ \equiv N CI \checkmark$	
	balanced equation - e.g. C ₆ H ₅ NH ₂ + HNC	$D_2 + H^+ \longrightarrow C_6H_5N_2^+ + 2H_2O \checkmark$	
	(any of the other marks above may be awa	rded if they appear in an equation)	max [4]
	MAX	4 from these 5	ſ.,
	(used to form) dyes / colourings / coloured	compounds ✓ ESSENTIAL mark	[1]
		n	rotal: 6]

Mark Scheme	Unit Code	Session	Year	Final Version
Page 5 of 8	2814	June	2002	,

Qu.	Expected answers:		Marks
5 (a) (i)	H H // C C // H ₃ C CH ₃		[1]
(ii)	CH₂ ✓		[1]
(iii)	c=c		
	н сн _з		[1]
(b) (i)	peptide / amide ✓		[1]
	— C—N—		[1]
(ii)	condensation ✓		[1]
(iii)	H H H H O O O O O O O O O O O O O O O O		[1]
	H_2N O	Σ Η	[1]
5 (b) (iv)	M_r glycine, $C_2H_5NO_2 = 75.(0) \checkmark$ M_r $C_4H_8N_2O_3 = 132.(0) \checkmark$		[2]
	use of 2:1 ratio to give 0.009333 mol of dipeptide <i>H</i> expected / ecf ✓	(or use of 2:1 ratio to give mass ratio of 150:132 / ecf)	[1]
	answer in the range 89.2 - 89.4 with 3 sf / ecf ✓(correct answer gets all 4 marks)	(answer in the range 44.6 - 44.7 (no 2.1) with 3 sf gets 3 marks overall)	[1]
(v)	H H O H-+N-C-C CI H H OH H H OH		
	NH ₃ ⁺ group ✓ rest of the molecule and Cl ⁻ ✓		[2]
		[Total:	

Mark Scheme	Unit Code	Session	Year	Final Version
Page 6 of 8	2814	June	2002	

Qu.	Expected answers:	Marks
6 (a) (i)	C ₇ H ₈ O ✓	[1]
(ii)	M_r = 108 so m/e of molecular ion = 108 / ecf from (i) \checkmark	[1]
(iii)	%C = (84.0)/(108) x 100% = 77.8% ✓	
:	$%H = (8.0)/(108) \times 100\% = 7.4\% \checkmark$	[2]
	/ ecf from (i) or (ii)	[2]
(b)	 K has OH group ✓ (ignore reference to any other bonds) 	
	L does not have OH group / peak at 3230 - 3550 cm ⁻¹ ✓	[3]
(c) (i)	peak at δ = 7.3ppm / with area 5, is due to the benzene ring (protons) \checkmark	
	peak at δ = 4.5ppm / with area 2, is due to the -CH ₂ - (protons) \checkmark	
	peak at δ = 3.2ppm / with area 1, is due to the OH (proton) \checkmark	[3]
(ii)	peak at δ = 3.2ppm / with area 1 disappears / ecf from (i) \checkmark	[1]
(iii)	expect peak at δ = 7.1-7.7 ppm \checkmark 5 protons responsible / area = 5 \checkmark	
	expect peak at δ = 3.3-4.3ppm \checkmark 3 protons responsible / area = 3 \checkmark	
		[4]
	וון	otal: 15]

Mark Scheme	Unit Code	Session	Year	Final Version
Page 7 of 8	2814	June	2002	

Qu.	Expected answers:	Marks
7 (a)	CH₃CH₂COOH ✓	[1]
(b)	C ₆ H ₅ NO ₂ ✓	[1]
(c)	CH₃CI / CH₃Br ✓ AlCI₃ / FeCI₃ / FeBr₃ etc ✓	[2]
(d)	$C_6H_5NH_3^+/C_6H_5NH_2$ \checkmark	[1]
(e)	CH ₃ COOC ₂ H ₅ ✓	[1]
(f) (i)	(CH ₃) ₂ C(OH)CN etc ✓	[1]

(ii) nucleophilic ✓ addition ✓

Look for the following in a diagram as above or description: (dipoles **not** required)

CN ¯/nucleophile attacks (δ)+ carbonyl C / curly arrow from CN ¯ to carbonyl C ✓ (curly arrow) breaking C=O ✓ correct structure of the intermediate ✓ curly arrow from O ¯ to HCN / H₂O ✓

ANY 5 out of the 6 marks above

max [5]

(curly arrows must be clearly from and to the correct bond / atom to gain the mark)

[Total: 12]

Mark Scheme	Unit Code	Session	Year	Final Version
Page 8 of 8	2814	June	2002	

Qu.	Expected answers:		Marks		
8	(structural isomerism is) same molecular formula, different structural formulae ✓				
	two correct structures of suitable example ✓				
	stereoisomerism (is same structural) formula /order of bonds, different spatial arrangements of the atoms ✓				
	(cis-trans / geometric isomerism is due to) non-rotation around a C=C double bond ✓				
	two correct structures of suitable example ✓				
	(optical isomerism is when) molecules are non- superimposable mirror images / asymmetric / contain a chiral centre ✓	(or polymers may be isotactic, atactic or syndiotactic)			
	carbon atom is attached to four distinguishable / different groups / atoms /(or shown in diagram) ✓	(or polymer side chain on the same, random or alternate sides)			
	two correct 3-d structures of suitable example ✓				
	8 points on isomerism (3 MAX for optical isomerism / polymers)				
	(synthesis of only one stereoisomer of a pharmaceutical is good because)				
	only one of the two stereoisomers may be active /the two isomers may have different activity in the body ✓ a smaller dose needed /saves cost of materials/separation ✓ (ora) the other may have (harmful) side effects ✓				
	good example of stereospecific drug e.g Thalidomide / Dopa / Ibuprofen ✓				
	4 points on chiral synthesis		max [10]		
	Quality of Written Communication				
	the answer is coherent, and at least two of the specialist t trans/geometric and optical isomerism are assigned co				
	the text contains at least two legible sentences with reasonably accurate spelling, punctuation and grammar \checkmark				
			[2]		

[Total: 12]