

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced GCE

CHEMISTRY 2814

Chains, Rings and Spectroscopy

Friday 24 JANUARY 2003 Afternoon 1 hour 30 minutes

Candidates answer on the question paper.
Additional materials:
Data Sheet for Chemistry
Scientific calculator

Candidate Name	Centre Number	Candidate Number

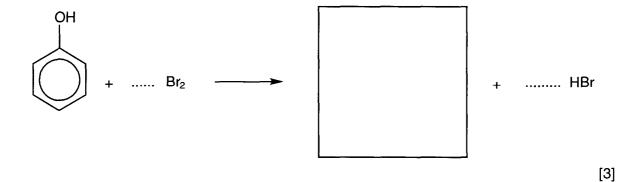
TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

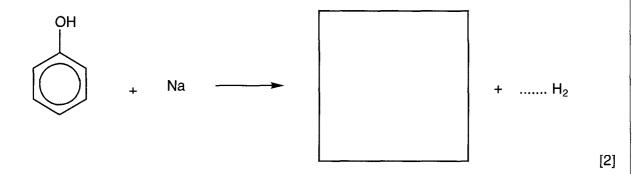
- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.


Max.	Mark
11	
13	
12	
11	
13	
13	
8	
9	
90	
	11 13 12 11 13 13 8 9

Answer all the questions.


1		e, methylbenzene and phenol are used in the chemical and pharmaceutical industrying materials for making more complex aromatic compounds.
	(a) Met	hylbenzene can also be made in the laboratory from benzene and chloromethane.
•	(i)	Draw the structural formula of methylbenzene.
	(ii)	[1] Give the equation for the preparation of methylbenzene from benzene.
	(iii)	[1] Identify, by name or formula, a suitable catalyst for this reaction.
		[1]
	(iv)	Methylbenzene is more reactive than benzene.
		Name and draw the structural formula of an organic product which might be formed from the reaction of methylbenzene with chloromethane in the presence of the catalyst.
		structural formula
		name[2]

(b) Complete and balance the following equations for the reactions of phenol, giving structural formulae for the organic compounds in the boxes provided.

(i)

(ii)

(c) State a general use for phenols.[1]

[Total: 11]

2	Glycine is an amino acid obtained from natural proteins by digestion. The structure of glycine is $\mathrm{CH_2(NH_2)COOH}$.			
	(a)	Stat	te in words the three dimensional shape adopted by the bonds in a molecule of sine	
		(i)	around the nitrogen atom,	
			[1]	
	((ii)	around the carbon atom of the CH ₂ group,	
	,	****	[1]	
	(iii)	around the carbon atom of the COOH group.	
			[1]	
			no acids react both with acids and with bases. w the structure you expect for glycine	
		(i)	in acidic solution,	
	((ii)	[1] in alkaline solution.	
	(c)	Prot	eins can also be converted into amino acids in the laboratory.	
		(i)	State the reagents and conditions required. [2]	
	((ii)	State the type of reaction taking place.	
			[1]	

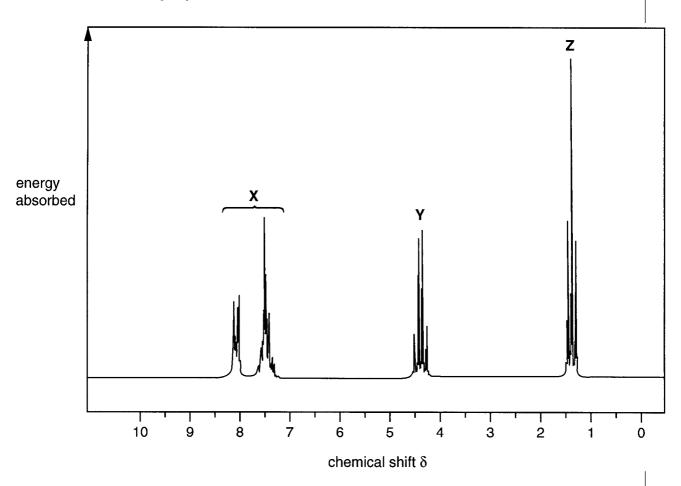
(d)	Alar Alar	nine, CH ₃ CH(NH ₂)COOH, is another amino acid obtained from proteins. nine has a chiral centre but glycine does not.			
	(i)	What is meant by the term chiral centre?			
		•••••			
					[1]
	(ii)	Draw t	the two	stereoisomers of alanine.	
					[0]
	/:::\	Mould	LVOU OV	pect the alanine isolated from a protein to be:	[2]
	(iii)		•	only one stereoisomer	
				a 1:1 mixture of both stereoisomers	
			or		
			or	unequal amounts of the two stereoisomers?	
			Tick on	e answer and explain your choice.	
					[2]
					[Total: 13]

3 Many organic compounds are used to add flavour to food and drink. Compound A has been used to add grape flavour to soft drinks.

A

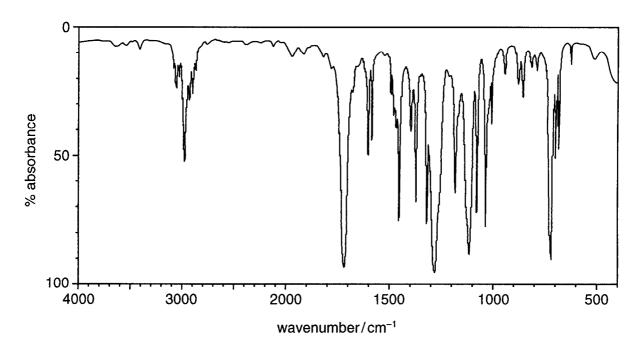
(a)	Apa	irt from the benzene ring, name the two functional groups in A .
	••••	
		[2
(b)	(i)	Deduce the molecular formula of A.

(ii) A 330 cm³ can of soft drink contains 0.100 g A. Calculate the concentration, in mol dm⁻³, of A.


concentration mol dm⁻³ [2]

(c) Compound B is similar to A and also has a fruity odour.

В


(i) The n.m.r. spectrum of **B** is shown below.

From the δ values, identify which of the protons of **B** are responsible for each of the groups of peaks **X**, **Y** and **Z**. Treat the peaks at δ 7–9 as a single group. Show your reasoning in your answer.

 [6]

(ii) The infra-red spectrum of **B** is shown below. Mark with a cross the **major** absorption peak which is characteristic of the -COOCH₂CH₃ group.

[1]

[Total: 12]

- 4 The nitration of an aromatic compound is the first stage in the synthesis of many commercially important compounds.
 - (a) (i) Describe the mechanism of the nitration of benzene. Include the reagents and overall equation in your answer, and show how the electrophile is generated.

	(ii)	Explain why this is classified as an <i>electrophilic substitution</i> reaction.
		[2]
(b)	Con	npound C is an aromatic nitro compound.
		O_2N NO_2 NO_2
	Pred	dict the chemical shifts of the peaks in the n.m.r. spectrum of C .

[Total: 11]

- 5 Compounds with the formula C_4H_9OH are alcohols.
 - (a) Draw formulae to show the four structural isomers of alcohols with the molecular formula $C_4H_{10}O$.

[4]

(b) One of the isomers in (a), compound **D**, reacts with K₂Cr₂O₇ in the presence of H₂SO₄, to give **E**.

When ${\bf E}$ is heated with ethanol in the presence of concentrated ${\bf H_2SO_4}$, compound ${\bf F}$ is formed.

D
$$\frac{K_2 \operatorname{Cr}_2 \operatorname{O}_7, \operatorname{conc.} \operatorname{H}_2 \operatorname{SO}_4}{\operatorname{heat}}$$
 E $\frac{\operatorname{ethanol, conc.} \operatorname{H}_2 \operatorname{SO}_4}{\operatorname{heat}}$ H₃C $CH_2 CH_3$

(1)	in this question, one mark is available for the quality of written communication.
	State the reaction, if any, of each of your alcohols in (a) with acidified $K_2Cr_2O_7$. Use this information and the reactions above to identify D and E . Give your reasoning.

				- arro your rout	,
			•••••		
	•••••	••••••			•••••
				••••••	
••••••	•••••	***************************************			
••••••					
				•••••	
	•••••	••••••			
					[5]

Quality of Written Communication [1]

(c) Compound F and compound G (shown below) are both esters. Draw the structure of the product of the reaction of G with hot, aqueous NaOH.

$$\begin{array}{c|c} H_2 & O \\ H_2 & O \\ H_2 & O \\ \hline G & \end{array}$$

[2]

[Total: 13]

6 2-Hydroxypropanoic acid (lactic acid) is present in milk. It can also be made in two stages from ethanal.

The laboratory synthesis of 2-hydroxypropanoic acid is outlined below.

0	stage I	compound	stage II	
сн₃с(″		X		2-hydroxypropanoic acid
H	HCN, KCN			

(a) (i) Give the mechanism for stage I.

4	41
٠	-

[2]

(ii) Describe the second stage of the synthesis by suggesting a suitable reagent and stating the type of reaction involved.

reagent:	•••••	 	 	••••••

(iii) Draw the structure of 2-hydroxypropanoic acid.

[1]

(b) 2-Hydroxypropanoic acid was dissolved in D2O and an n.m.r. spectrum of the solution was taken. Predict, with reasons, the ${\bf splittin\bar{g}}$ patterns observed in this spectrum. (c) Hept-4-enal, H, is also present in milk. H (i) Deduce the molecular formula of H. (ii) Draw the skeletal formula of a stereoisomer of H. [1] (iii) J and K can be made from H. Draw skeletal formulae for **J** and **K** in the boxes provided. Н NaBH₄ H₂, Pd catalyst K J [2]

[Total: 13]

7 Polymers can be made either from a single monomer or from more than one monomer. Two polymers, **L** and **M**, are shown below.

Polymer

L

Polymer

М

(a) Deduce the structures of the monomers from which L and M could be obtained.

For L:

For M:

[3]

[2]

(b) Polymer N can be made from the monomer P only, shown below.

Suggest a structure for polymer N, showing three repeat units.

[Total: 9]

8 In this question, one mark is available for the quality of written communication.

Ketones of different chain lengths are important to the flavour of dairy foods. You are given a sample of an unknown ketone isolated from cheese.

Describe how you would

- detect the presence of a carbonyl group in your compound,
- confirm that it is a ketone and not an aldehyde,

use a chemical method to identify which ketone you have.

Copyright Acknowledgement

Question 3(i) n m r spectrum at SDBS Web http://www aist go jp/RJODB/SDBS/14 06 02

OCR has made every effort to trace the copyright holders of items used in this question paper, but if we have inadvertently overlooked any, we apologise

2814 Chains, Rings and Spectroscopy January 2003 Mark Scheme

Marking structures in organic chemistry

When a structure is asked for, there must be sufficient detail using conventional carbon skeleton and functional group formulae (e.g. CH₃, C₂H₅ OH, COOH, COOCH₃) to unambiguously define the arrangement of the atoms. (E.g. C₃H₇ would not be sufficient)

If not specified by the question, this may be given as either:

a structural formula - e.g CH₃CH(OH)C₂H₅,

a displayed formula - e.q

or as a hybrid of these - e.g.

The following errors should be penalised – although each one only loses a maximum of one mark on the paper:

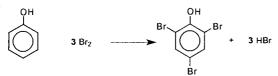
- clearly connecting a functional group by the wrong atom
- showing only 'sticks' instead of hydrogen atoms -

Benzene rings may be represented as of the types of formula above

¹ Note that in organic chemistry a candidate may identify a compound by name and formula. If one of these is wrong then the mark is not awarded as this is a contradictory answer

1 (a) (i)

[1]


(ii)
$$C_6H_6 + CH_3CI \longrightarrow C_6H_5CH_3 + HCI \checkmark$$

[1]

[1]

name ✓ eg 1,2-dimethylbenzene/ 1,4-dimethylbenzene

[2]

brominated phenol ✓ 2,4,6 substituted ✓ balancing ✓

[3]

phenoxide ✓ balancing ✓

[2]

(c) any general use that contains phenois - eg

antiseptics / disinfectants /dyes / plastics /pharmaceuticals / pesticides/explosives ✓

[1] [Total: 11] 2 (a) (i) (trigonal) pyramidal ✓

[1]

(ii) tetrahedral ✓

[1]

(iii) trigonal (planar) ✓

[1]

(b) (i) H₃N⁺CH₂COOH ✓

[1]

(ii) NH₂CH₂COO ⁻ ✓

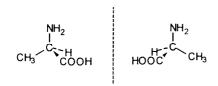
[1]

(c) (i) H⁺ / acid / HCl / H₂SO₄ / OH ⁻ / alkali ✓ /heat / reflux ✓

(or use of an enzyme at 37° ish)

[2]

(ii) hydrolysis ✓


[1]

(d) (i) carbon with four different / distinguishable groups attached ✓

(or carbon / part of the molecule / atom which is assymetric / non-superimposible on its mirror image)

[1]

(ii)

one structure of alanıne with at least one 3-d bond ✓ two optical isomers / reflections of a 3-d structure ✓

[2]

(iii) one stereoisomer ✓

natural /from a living system / made by enzymes etc ✓

[Total: 13]

[2]

from first principles using the expected deshielding to assign the peaks

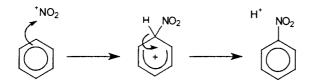
reasoning from the splitting pattern .

Y peak is a quadruplet/1 3 3.1 etc

this is due to 3 neighbours / adjacent to a CH₃ ✓

Z peak is a triplet / 1 2·1 etc this is due to 2 neighbours /adjacent to a CH₂ ✓

ANY 3 out of 5 reasoning marks [6]


(ii) peak at 1700cm⁻¹ and/or at 1280cm⁻¹ marked ✓ [1]

[Total: 12]

4 (a) (i) reagents conc H₂SO₄ + HNO₃ ✓

electrophile
$$NO_2^- \checkmark$$

 $H_2SO_4^- + HNO_3^- \longrightarrow HSO_4^- + H_2O^- + NO_2^+ /$
 $2H_2SO_4^- + HNO_3^- \longrightarrow 2HSO_4^- + H_3O^+ + NO_2^+ \checkmark$

mechanism

curly arrow from benzene π -bond to electrophile \checkmark correct intermediate (ecf on electrophile formula) \checkmark curly arrow from C-H bond to π -bond and H $^+$ formed \checkmark

overall equation

$$C_6H_6 + HNO_3 \longrightarrow C_6H_5NO_2 + H_2O \checkmark$$

ANY 6 out of 7 [6]

(ii) NO₂⁺ accepts an electron pair ✓
H is replaced / substituted by NO₂ ✓
[2]

(b) two peaks ✓
peak at/between 2 3-2 7 ✓
peak at/between 7 1-7 7 ✓

[3]

[Total: 11]

5 (a)

any unambiguous type of formula </

[4]

(b) (i) butan-1-ol gives butanal /butanoic acid / an aldehyde / a carboxylic acid butan-2-ol gives butanone / a ketone
 2-methylpropan-2-ol gives no reaction ✓✓✓

3 marks for the alcohol reactions

D is methylpropan-1-ol ✓ E is methylpropanoic acid ✓ ✓ (where any carboxylic acid for E gets the first mark)

3 marks for identifying D and E

Quality of Written Communication

information is organised clearly and coherently using at least **two** specialist terms not mentioned in the question (eg correct names of compounds, primary, secondary, aldehyde, ketone, oxidised etc.) \checkmark

[6]

(ii)
$$(CH_3)_2CHCOOH + C_2H_5OH \longrightarrow (CH_3)_2CHCOOC_2H_5 + H_2O / C_4H_8O_2 + C_2H_6O \longrightarrow C_6H_{12}O_2 + H_2O / ecf from (i) \checkmark$$
 [1]

(c)

2]

[Total: 13]

6 (a) (i) nucleophilic addition ✓

CN · ✓

both curly arrows / arrow from nucleophile and dipole ✓

both curly arrows ✓

intermediate

ANY 4 out of 6

and X ✓

[4]

(ii) HCI / H₂SO₄ / H⁺ / acid ✓ hydrolysis ✓

[2]

[1]

(b) 1 doublet and 1 quadruplet / 1 3 3 1 and 1.1 ✓ correct reason for at least one peak ✓ (eg 1,3 3,1 due to 3 neighbours / next to CH₃ / use of n+1 rule)

[2]

[1]

[1]

(iii)

[2]

[Total: 13]

7 (a) L:

M:

at least one correct ester link \checkmark rest of the structure and repeat also correct \checkmark

(c) condensation ✓ loss of water / small molecule ✓ [2]

(d) fibres / clothing / bottles etc ✓ [1]

[Total: 8]

[2]

8 to detect the presence of C=O ...

2,4-dinitrophenylhydrazine / 2,4-DNPH ✓ red/orange/yellow ppt/solid/crystals ✓

or

ir spectrum ✓ has peak at 1680-1750 cm⁻¹ ✓

2 marks

to confirm it is a ketone not an aldehyde ...

Tollens' reagent /(acidified) K₂Cr₂O₇ ✓ aldehyde: silver mirror / green colour ✓ ketone: no silver mirror / no green colour ✓

or

n m r. spectrum ✓ aldehyde: peak at 9.5-10 ✓ ketone: no peak at 9.5-10 ✓

3 marks

a chemical method to identify the ketone ...

use the product / solid / ppt from 2,4-DNPH / 2,4-dinitrophenylhydrazine
(re)crystallise / purify (the product)
measure the melting point
compare with known compounds / data book

4 marks

ANY 8 marks out of 9 [8]

Quality of Written Communication

at least two sentences with legible text, accurate spelling, grammar and punctuation, so the meaning is clear \checkmark

[1]

[Total: 9]