	en heated, chlorine gas, Cl ₂ dissociates into gaseous chlorine atoms.
	$Cl_2(g) \rightleftharpoons 2Cl(g)$
A cl was	nemist placed some chlorine gas in a container which was heated to 1400 K. The container left until equilibrium had been reached.
Und Cl(g	ler these conditions, the equilibrium partial pressure of Cl ₂ (g) is 85.0 kPa and that of)) is 3.0 kPa.
(a)	What is meant by partial pressure?
	[1]
(b)	Determine the mole fraction of Cl in the equilibrium mixture.
	[1]
(c)	(i) Write an expression for K_p for this equilibrium.
(c)	(i) Write an expression for K_{ρ} for this equilibrium.
(c)	(i) Write an expression for K_{ρ} for this equilibrium.
(c)	(i) Write an expression for K_p for this equilibrium. [1]
	[1]
	[1]
	[1]
	[1]

0/98

(d) The chemist compressed the reaction mixture and allowed it to reach equilibrium under these new conditions.

Explain what happened to the composition of the equilibrium mixture.

-

[2]

(e) The chemist changed the temperature of the reaction mixture. The value of K_p decreased.

Explain how this change affected the composition of the equilibrium mixture.

-[1]
- (f) Industrially, chlorine is prepared by passing an electric current through a 4.00 mol dm⁻³ solution of sodium chloride, known as brine.

 $2NaCl(aq) + 2H_2O(l) \rightarrow Cl_2(g) + 2NaOH(aq) + H_2(g)$

Each year in the UK, 1.6 million tonnes of Cl₂ is produced for many uses, including water treatment and the manufacture of plastics.

Calculate the volume of brine required each year for Cl₂ production in the UK.

 $1 \text{ tonne} = 10^{6} \text{g}.$

Exc

Examiner's Use

Nitrogen dioxide is one of the major pollutants in air, formed by reaction of nitrogen monoxide with oxygen.

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$

(a) What is meant by the rate of reaction?

(b) A series of experiments was carried out to investigate the kinetics of this reaction. The results are shown in the table below.

Experiment	[O ₂] / mol dm ⁻³	[NO] / moldm ⁻³	Initial rate / moldm ⁻³ s ⁻¹
1	0.00100	0.00100	7.10
2	0.00400	0.00100	28.4
3	0.00400	0.00300	256

(i) For each reactant, deduce the order of reaction. Show your reasoning.

	O ₂ (g)				
	Same and a second s				
	NO(g)				
	[4]				
(ii)	Deduce the rate equation for this reaction,				
	[1]				
(iii)	Calculate the rate constant, k, for this reaction. State the units for k.				
	k = units [2]				

k =

units

(c)	Nitrogen dioxide reacts with carbon monoxide emitted from car exhausts in the following reaction.			
		$NO_2 + CO \rightarrow NO + CO_2$		
	The	rate equation for this reaction is $rate = k[NO_2]^2$.		
	This	s is a multi-step reaction. The first step is the rate-determining step.		
	(i)	What is meant by the rate-determining step?		
		[1]		
	(ii)	Suggest a two-step reaction mechanism for this reaction that is consistent with the kinetic data and the overall reaction.		
		[2]		
(d)	con	2 reacts with oxygen and water to form nitric acid, HNO3. In the atmosphere, this tributes to acid rain. Construct a balanced equation for this formation of nitric acid use oxidation numbers to show that this is a redox reaction.		
		[Total: 13]		

The K _a	values for three acids ar	6 e shown in the tat	le below.		Exa
	a	acid		1	ł
	ethanoic acid	СН _з СООН	1.70 × 10 ⁻⁵		1
	phenol	C ₆ H ₅ OH	1.28 × 10 ⁻¹⁰		
	sulphurous acid	H ₂ SO ₃	1.50 × 10 ⁻²		Ť.
(a) Wh	at information is provide	d by $K_{\rm g}$ values?			
				[1]	
н	29-26110 29-26110	COOH(aq) ←	HSO ₃ -(aq) +	CH ₃ COOH ₂ *(aq)	
	 label one conjugation label the other conjugation 	ate acid-base pai njugate acid-bas	r as acid 1 and base e pair as acid 2 and 1	1, pase 2. [2]	
(ii)	Predict and explain th were mixed with pheno	e acid-base react xl. Include an equa	ion that would take p ation in your answer.	place if ethanoic acid	
					ł
					s.

(c)	The pH value of 0.0450 mol dm $^{-3}$ hydrochloric acld is different from that of 0.0450 mol dm $^{-3}$ ethanoic acid.	Use
	Calculate the pH values of these two acids. Show all your working.	
	1=1	
(a)	An excess of magnesium was added to 100 cm ³ of 0.0450 moldm ⁻³ hydrochloric acid. The same mass of magnesium was added to 100 cm ³ of 0.0450 moldm ⁻³ ethanoic acid.	
	Both reactions produced 54 cm ³ of hydrogen gas, measured at room temperature and pressure, but the reaction with ethanoic acid took much longer to produce this gas volume.	
	Explain why the reactions produced the same volume of a gas but at different rates.	
	Use equations in your answer.	
	[4]	
	[Total: 14]	- 10
	281801 Junce [Turn c	ver
		17.2.13 Page

	8
É.	In this question, one mark is available for the quality of use and organisation of scientific terms.
	Mixtures of ammonia, NH3, and ammonium chloride, NH4Cl, can be used as the basis of buffer solutions.
	Explain how this mixture acts as a buffer solution.
	Use equations in your answer.
	Quality of Written Communication [1]

PTetel: 71

I

1 m	1 mole of gas molecules occupies 24.0 dm ³ at room temperature and pressure.					
The	Avog	gadro constant = 6.02 × 10 ²³ mol ⁻¹ .				
(a)	(a) A chemistry student bought a bar of chocolate. The student looked on found that the main ingredient listed was 'sugars', making up 47.0% by 43.0g chocolate bar. Throughout this question you can assume that all the present as sucrose, C12H22O11.					
	(i)	How many sucrose molecules were in the bar of chocolate?				
		[4]				
	(ii)	The student ate the bar of chocolate. The standard enthalpy change of combustion of sucrose is -5640 kJ mol ⁻¹ . On food labels, the energy content is measured in Calories, 1 Calorie = 4.18 kJ.				
		 Write an equation for the chemical change involved in the standard enthalpy change of combustion of sucrose. How much energy, in Calories, is available to the student from the sugars in the chocolate bar? 				
		anergy = Calories (3				
		oxide of nitrogen is used as the propellant in whipped cream. This oxide contain				

(c) Chocolate mousse contains gelatine and a compound to promote fast setting of the mousse.

Compound A is such a setting agent. It has two acidic hydrogen atoms per molecule and is one of the six acids listed below.

oxalic acid	нооссоон		
malonic acid	HOOCCH2COOH		
succinic acid	HOOC(CH2)2COOH		
glutaric acid	HOOC(CH2)3COOH		
adipic acid	HOOC(CH2)4COOH		
pimelic acid	HOOC(CH2)5COOH		

The student analysed a sample of compound A by titration.

The student dissolved 2.82g of compound A in water and made the solution up to $250\,\text{cm}^3$ in a volumetric flask. He titrated $25.0\,\text{cm}^3$ of this solution with $0.175\,\text{mol}\,\text{dm}^{-3}$ NaOH.

22.05 cm³ of NaOH were required for complete neutralisation.

Use the results of the student's analysis to identify compound A from the list above.

Show all of your working.

[5]

[Total: 15]

END OF QUESTION PAPER

2815/01 Jun06

038