

Subject: Chains and Rings Code: 2812

Session: January Year: 2003

Final Mark Scheme

25/1/2003

MAXIMUM MARK 60

1.

- (a)(i) B **✓** [1]
- (ii) C ✓ [1]
- (iii) B **✓** [1]
- (iv) A ✓ [1] and C ✓ [1]
- (b) equation $C_4H_9Br + NH_3 \rightarrow C_4H_9NH_2 + HBr (or C_4H_9NH_3^+Br^-)$ \checkmark [1] name: 1-aminobutane/(n-)butylamine/butan-1-amine \checkmark [1] solvent ethanol/alcohol
- (c) (i) lone pair (of electrons) donor
- If diagram shows a total of 8 electrons

 and has a negative charge.
 only award if the diagram shows 8 electrons
- (iii) unambiguous identification of organic product:

2-methylpropan-1-ol,

[Total : 12]

2. (a)(i) same molecular formula -different structure same formula -different structure only scores 1 mark

// [2]

(ii)

H H Br H-C-C=C-Br H	H Br H 	H H H Br-C-C=C-Br H	H Br H Br—C—C=C—H H	Br H H Br-C-C=C-H H
1	2	3	4	5

✓[1]

✓[1]

√[1]

(iii) 1,1-dibromopropene

✓ [1]

(b) (i)

H₃C H ✓[1] C=C Br Br cis

(ii) bond angle = $120^{\circ} \pm 4^{\circ}$

/ [1]

- (iii) Each C in the C=C is **not** bonded to two different atoms/groups/ or equivalent.
- **/** [1]

(iv) Must be 1,3-dibromopropene.

/ [1]

[Total : 11]

3. (a)

(i) H	✓	[1]
-------	----------	-----

(ii)
$$Br_2 \rightarrow 2 Br \bullet$$
 [1]

(iv)
$$Br \bullet + C_5H_{12} \rightarrow \bullet C_5H_{11} + HBr$$
 [1]

$$\bullet C_5 H_{11} + Br_2 \rightarrow C_5 H_{11} Br + Br \bullet$$
 [1]

[Total : 11]

4. (a)

(i) $C_{10}H_{20}O$

✓ [1]

(ii) alcohol/ OH/ hydroxy(1)

/ [1]

secondary

/ [1]

(b)

1 mark for each alkene

VV

[2]

(c)

or full structural formula showing all the atoms

1 mark is available for the ester group showing CH₃ bonded via COO to a ring

2 marks for structure as shown

/ [2]

[Total: 7]

5. (a) (i) electrophilic (1] addition

4 marking points: curly arrow from double bond to Cl₂,

curly arrow showing movement of electrons in the Cl-Cl bond or the

dipole in the CI-CI,

Intermediate carbocation/carbonium ion,

Curly arrow from Cl⁻ to intermediate. [4]

(ii) general problems:

non-biodegradable/ not broken down by bacteria/ do not decompose
✓ [1]

when burnt toxic fumes are produced [1]

specific problem of PVC:

(ii) removal of toxic products or HCl formed during combustion <u>by gas scrubbers</u>/ by dissolving in a spray of alkali/ recycling/feedstock recycling/use energy from combustion for domestic heating/ manufacture biodegradable polymers .

[1]

[Total : 10]

- **6.** 3 marks for equations,
 - 2 marks for correctly explaining (in words) each of the 3 processes.
 - 1 mark for correctly explaining (in words) 2 of the processes.

<u>Cracking.</u> equation for long chain alkane into shorter chain alkane + alkene. ✓ [1]

Isomerisation

equation for straight chain alkane converted into a branched chain alkane

equation could be in the form of:

[1]

Reforming

to show straight chain into ring (& must be balanced with appropriate number of H_2 .) \checkmark [1]

(All three processes require) the use of heat and/or a catalyst

(Allow once) ✓ [1]

Importance of the products:

max of 3 marks.

/// [3]

- more volatile/lower boiling points
- used in fuels because they burn better/smoother/more efficiently/more efficient fuel
- additive to petrol
- reduce knocking/pinking/increase octane number or rating
- alkenes can form polymers/PVC (see Q5)/alcohols etc

1 mark for quality of written communication to be awarded for clear presentation and SPAG.

[Total:8]

[1]