

2812 Chains and Rings

June 2003

Mark Scheme

2812 Mark Scheme June 2003

The following annotations may be used when marking:

X = incorrect response (errors may also be underlined)

^ = omission mark

bod = benefit of the doubt (where professional judgement has been used)

ecf = error carried forward (in consequential marking)

con = contradiction (in cases where candidates contradict themselves in the

same response)

sf = error in the number of significant figures

Abbreviations, annotations and conventions used in the Mark Scheme:

/ = alternative and acceptable answers for the same marking point

; = separates marking points NOT = answers not worthy of credit

() = words which are not essential to gain credit

(underlining) = key words which <u>must</u> be used

ecf = allow error carried forward in consequential marking

AW = alternative wording ora = or reverse argument

2812	Mark Scheme						June 2003		
1. (a)(i)	÷ each by its own A _r to giv	e 5	:	13.3	:	1.67	✓	[1]	
	÷ each by 1.67 to give	3	:	8	:	1	✓	[1]	
(ii)	Evidence of working e.g.	36 + 8	+ 16 =	60 / tha	at C ₃ H ₈ 0	O adds up to 6	0 🗸	[1]	
(b)	unambiguous structure/form	nula of pro	opan-1	-ol & pr	opan-2	-ol to include:			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
(c)(i)	dichromate/ Cr ₂ O ₇ ²⁻ /MnO) ₄ -					✓	[1]	
(ii)	orange to gree	n n/brown/b	lack/pi	nk/colo	urless		//	[2]	
(iii)	continuous boiling/evapora heating & return of liquid to simple sketch showing vert (any reference to a closed	reaction fical conde	flask/ enser 8	k heat			1	[1]	
(d)(i)	OH/alcohol/hydroxy/hydrox	yl – not hy	ydroxid	le			✓	[1]	
(ii)	C=O/carbonyl – not CO						✓	[1]	

carboxylic acid/-CO₂H/-COOH

propan-1-ol (no marks) propan-1-ol oxidised to a carboxylic acid/

C₃H₈O + 2[O] \rightarrow CH₃CH₂COOH / C₃H₆O₂ + H₂O 1 mark available if, CH₃CH₂COOH & H₂O present in the equation

(iii)

(e)

(f)

√ √ [2]

[Total : 15]

[1]

[1]

2812 **Mark Scheme** June 2003 2. 1,1-dibromoethene [1] (a)(i) (ii) CHBr [1] (b)(i) (Br₂ is) decolourised [1] (ii) electrophilic [1] [1] addition allow names & unambiguous formulae throughout part (c) (c) (i) Isomer **C** reacts with H₂. 1 mark [1] conditions suitable catalyst such as Ni/Pt/Pd [1] (ii) and 1 mark 1 mark [2] (iii) [1] 1 mark

phosphoric acid (catalyst)

temp ≥ 100 °C/ steam

conditions

[Total : 12]

[1]

[1]

2812	Mark Scheme		June 2003			
3. (a)	non-polar	✓	[1]			
	hence particles not <u>attracted</u> to methane	✓	[1]			
(b)	(free radical) substitution	✓	[1]			
	• $CH_4 + Br_2 \rightarrow CH_3Br + HBr$	✓	[1]			
	ultra violet/UV light	✓	[1]			
	• $Br_2 \rightarrow 2 Br \bullet$	✓	[1]			
	homolysis/ homolytic fission	✓	[1]			
	• Br• + CH ₄ \rightarrow •CH ₃ + HBr	✓	[1]			
	• •CH ₃ + Br ₂ \rightarrow CH ₃ Br + Br•	✓	[1]			
	• any two free radicals 2 Br• \rightarrow Br ₂	✓	[1]			
	free rads are difficult to control/react with anything/very reactive	✓	[1]			
	identifies one of CH ₂ Br ₂ / CHBr ₃ / CBr ₄ or can be polysubstituted	✓	[1]			
		[10 ma	x = 9]			
	1 QWC mark is available for using specific chemical terms.					
	chemical terms: initiation, propagation, termination, free radical substitution, homolysis/ homolytic fission, photochemical					
	and the target and a support	,	[4]			

[Total : 11]

2812 Mark Scheme June 2003

4.

(a) (i)
$$C_4H_9Br + OH^-/NaOH/H_2O \rightarrow C_4H_9OH/C_4H_{10}O + Br^-/NaBr/HBr$$
 [1]

marking points:

dipoles

curly arrow from OH- to C $^{\delta \text{+}}$

curly arrow from C-Cl bond to Cl

√√√ [3]

- (ii) C-I has the weakest bond/ C-CI has the strongest bond ✓ [1]

[Total : 6]

2812	Mark Scheme		June 2003	
5. (a)	$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$	✓	[1]	
(b) (i)	M_r of $C_6H_{12}O_6 = 180$	✓	[1]	
	200 moles (0.2 will be a common error)	✓	[1]	
	(ii) 400 moles/ ecf to (a)(ii) *2	✓	[1]	
	(iii) 50 moles	✓	[1]	
	(iv) (iii)/(ii) x 100 = 12.5%	✓	[1]	
(c) (i)	(must <u>name</u>) aldehyde/carbonyl	✓	[1]	
(i)	CH ₃ CO ₂ H/ CO ₂	✓	[1]	
(d)	CH ₃ OH + [O] \rightarrow HCHO/CH ₂ O + H ₂ O	/ /	[2]	
(e)(i)	$CH_3OH + 1^1/_2O_2 \rightarrow CO_2 + 2H_2O/2CH_3OH + 3O_2 \rightarrow 2CO_2 + 4I_2O_2$	H ₂ O √	[1]	
(ii)	burns <u>more</u> cleanly/ reduces CO(g) emissions / reduces benzene emiss less pollutants/ higher octane rating(number)/less knocking/ / improves obetter fuel/ burns more cleanly/ absorbs free radicals/ oxygenates		tion/ [1]	
(f)(i)	$CH_3OH + CO \rightarrow CH_3CO_2H$	✓	[1]	
(ii)	H H H H H H H H H H H H H H H H H H H		[1]	
(iii)	H O H OOCCH ₃		[1]	

[Total : 15]