

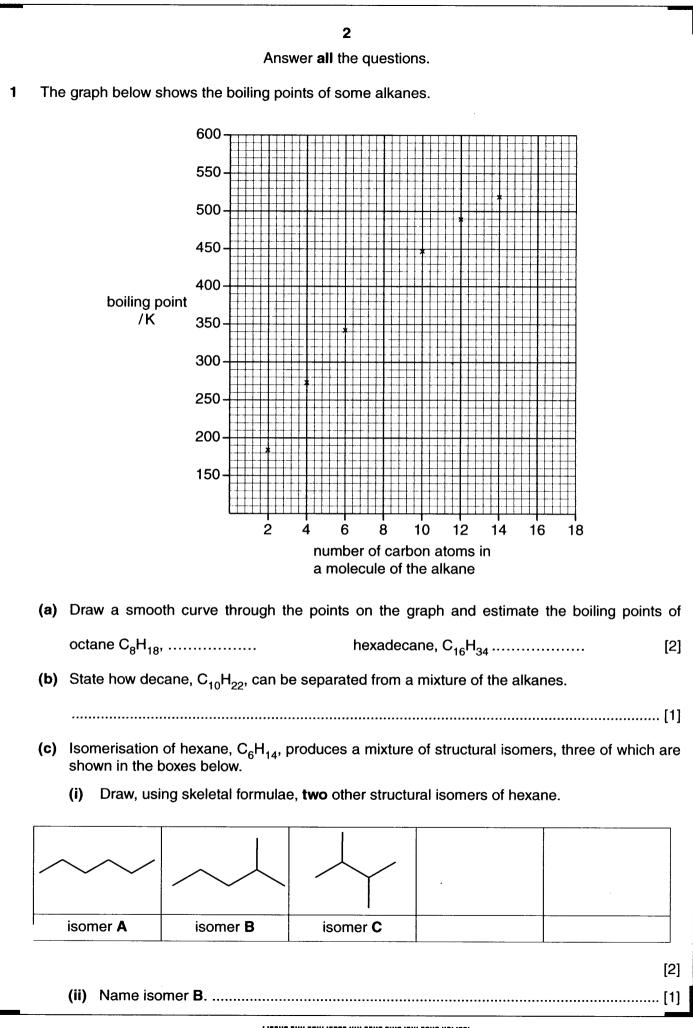
	OXFORD CAMBRID Advanced Subsidia		IINATIONS	
	CHEMISTRY Chains and Rings			2812
	Wednesday	7 JUNE 2006	Morning	1 hour
	Candidates answer on the Additional materials: <i>Data Sheet for Chemis</i> Scientific Calculator			
Candidate Name	e			
Centre Number			Candidate Number	

TIME 1 hour

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Write your answers, in blue or black ink, in the spaces provided on the question paper.
- Pencil may be used for graphs and diagrams only.
- Do not write in the bar code. Do not write in the grey area between the pages.
- **DO NOT** WRITE IN THE AREA **OUTSIDE** THE BOX BORDERING EACH PAGE. ANY WRITING IN THIS AREA WILL NOT BE MARKED.

INFORMATION FOR CANDIDATES


- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.

This question paper consists of 13 printed pages and 3 blank pages.

SP (SJF3619/CG) S92577/5 © OCR 2006 [T/100/3424] Registered Charity Number: 1066969

FOR E)	FOR EXAMINER'S USE		
Qu	Max.	Mark	
1	16		
2	10		
3	10		
4	15		
5	9		
TOTAL	60		

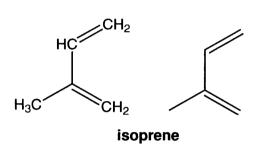
	3
(iii)	Isomers A , B and C have different boiling points. In the boxes below, list the isomers A , B and C in order of their boiling points.
	lowest boiling point [1]
(iv)	Explain the order given in (c) (iii) .
(d) Hex	ane can be reformed to produce cyclohexane as one of the products.
(i)	Draw the structural formula of cyclohexane.
(ii)	[1] Write a balanced equation for the reforming of hexane into cyclohexane.
	[1]
(iii)	Suggest one reason why oil companies reform alkanes such as hexane.

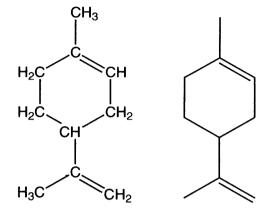
- 4
- (e) Oxygen-containing compounds can be added to improve the efficiency and performance of fuels.

In Formula One racing cars, it is common practice to add oxygen-containing compounds, such as 2-methylpropan-2-ol, $(CH_3)_3COH$. The amount of oxygen-containing compounds added is strictly controlled by the Federation Internationale de l'Automobile, FIA.

(i) Calculate the percentage by mass of oxygen in (CH₃)₃COH. Give your answer to three significant figures.

answer [2]


(ii) Write a balanced equation for the complete combustion of $(CH_3)_3COH$.


[2]

[Total: 16]

6
2 Isoprene is an alkene that can be tapped from some trees. It is the monomer in natural rubber. Limonene is a natural oil found in the rind of oranges and lemons. Both isoprene and limonene contain two double bonds. Their structural and skeletal formulae are shown below.

limonene

(a)	(i)	What is the molecular formula of isoprene?	[1]
((ii)	What is the empirical formula of limonene?	[1]
(b)	In th	ne presence of a suitable catalyst, isoprene and I	imonene both react with hydrogen.
	(i)	State a suitable catalyst for this reaction.	[1]

(ii) Write an equation for the reaction when isoprene reacts completely with hydrogen.

[2]

7 (iiii) Draw the skeletal formula of a product formed when limonene reacts partially with hydrogen. [1] (c) 2-Methylbut-1-ene can be formed by the partial hydrogenation of isoprene. 2-Methylbut-1-ene reacts with Br₂ to produce 1,2-dibromo-2-methylbutane by an electrophilic addition mechanism. The mechanism for the reaction is shown below. CH₃ H₃C H₃C step 1 step 2 CH₂ CH₂Br CH₃CH₂· CH₂Br CH₃CH₂ CH₃CH₂ Br Br⁻ Br Βr In step 1, Br₂ behaves as an electrophile. Explain what is meant by the term *electrophile*. (i)[1] (ii) Label any relevant dipoles and add 'curly arrows' to the mechanism to show the movement of electron pairs in step 1 and in step 2. [3] [Total: 10]

- Halogenoalkanes are used in the production of pharmaceuticals, polymers and flame retardants.
 - (a) 1-Bromo-2-methylpropane is used in the production of ibuprofen and can be prepared from the reaction between 2-methylpropan-1-ol and HBr.

 $(CH_3)_2CHCH_2OH + HBr \rightarrow (CH_3)_2CHCH_2Br + H_2O$

A student reacted 4.44 g of 2-methylpropan-1-ol with an excess of HBr. The student produced 5.48 g of 1-bromo-2-methylpropane.

(i) Calculate the number of moles of $(CH_3)_2CHCH_2OH$ used.

3

answer mol [2]

(ii) Calculate the number of moles of $(CH_3)_2CHCH_2Br$ collected. $(CH_3)_2CHCH_2Br$, M_r =137

answer mol [1]

(iii) Calculate the percentage yield. Quote your answer to three significant figures.

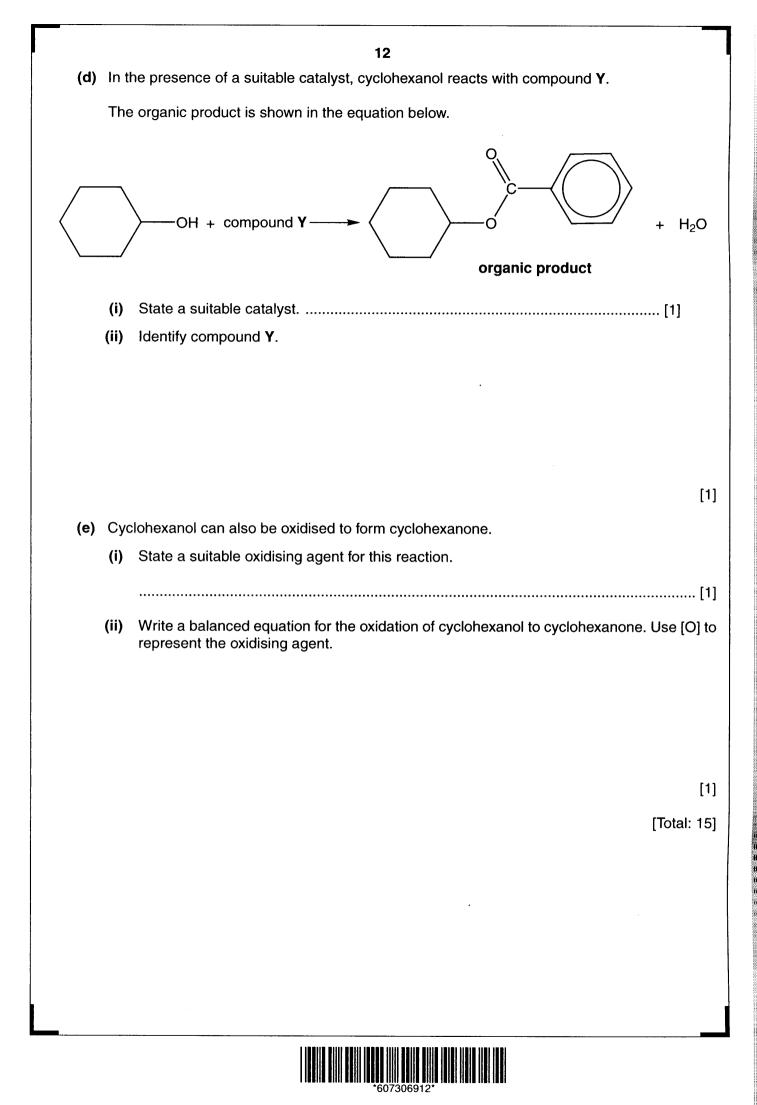
answer [1]

		9
(b)	Chl	oroethene, CH_2CHCl , is polymerised to form poly(chloroethene) commonly known as pvc .
	(i)	Draw a section of <i>pvc</i> showing three repeat units. Put a bracket round one repeat unit.
		[2]
	(ii)	Polymers such as <i>pvc</i> are difficult to dispose of because they are non-biodegradable. Increasingly, they are disposed of by combustion.
		State the problem associated with the combustion of polymers such as pvc.
		and provide a social de annu ine compastion of polymers such as pre.
	(iii)	State two ways in which chemists are trying to minimise the damage to the environment
		caused by the disposal of halogenated plastics such as pvc.
(c)		F Bromochlorodifluoromethane has been used as a flame retardant.
		When exposed to high temperatures, one of the C-halogen bonds
		Clum. C/ undergoes homolytic fission to produce free radicals.
	Br	F
	_	
	Sug	gest, with a reason, which C-halogen bond is most likely to be broken.
	The	C-halogen bond most likely to be broken is because
	•••••	
		[4]
		[Total: 10]

		10
4	(a) C	yclohexane, C_6H_{12} , reacts with chlorine to produce chlorocyclohexane, $C_6H_{11}Cl$.
		$C_6H_{12} + Cl_2 \rightarrow C_6H_{11}Cl + HCl$
	т	he mechanism for this reaction is a free radical substitution.
	() Write an equation to show the initiation step.
		[1]
	(i) State the conditions necessary for the initiation step.
		[1]
	(ii) The reaction continues by two propagation steps resulting in the formation of chlorocyclohexane, C ₆ H ₁₁ Cl.
		Write equations for these two propagation steps.
		step 1
		step 2[2]
	(iv) State what happens to the free radicals in the termination steps.
		[1]
	(b) (hlorocyclohexane reacts with NaOH to produce either cyclohexanol or cyclohexene.
		OH
		Cl + NaOH - Solvent W + NaOH - Solvent W
	г	he organic product depends on the solvent used.
	ł	dentify solvent W , and solvent X [2]

- 11 (c) A student refluxed a solution of chlorocyclohexane and NaOH. The organic product was separated and analysed by infra-red spectroscopy. The infra-red spectrum of the organic product is shown below. absorbance 4000 3000 2000 1500 1000 500 wavenumber / cm⁻¹ The student used the infra-red spectrum to conclude that cyclohexene had been produced. (i) Explain what is meant by refluxed.[1]
 - (ii) Use your *Data Sheet* to explain why the student was justified in ruling out cyclohexanol as the organic product.

(iii) A simple chemical test can be used to confirm that the alkene, cyclohexene, had been produced.


Clearly state what you would see and write a balanced equation for the reaction.

test and observation

equation

[2]

each type of isom	erism arises.) OF 15011161151111	n compounds wit	h formula C ₄ H ₈ . Explai
			,	
,				
		•••••••		
		•••••		
			Quality of	f Written Communicatio
				[Tota
				-
	END (OF QUESTION	PAPER	

