

OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced Subsidiary GCE

CHEMISTRY 2811

Foundation Chemistry

Friday 17 JANUARY 2003 Morning 1 hour

Candidates answer on the question paper.
Additional materials:
Scientific calculator
Data Sheet for Chemistry

Candidate Name	Centre Number	Candidate Number

TIME 1 hour

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE		
Qu.	Max.	Mark
1	12	
2	17	
3	14	
4	8	
5	9	
TOTAL	60	

Answer all the questions.

- 1 Gallium, atomic number 31, exists naturally as a mixture of its isotopes, ⁶⁹Ga and ⁷¹Ga.
 - (a) Complete the table below to show the atomic structure of each isotope of gallium.

icatana		number of	
isotope	protons	neutrons	electrons
⁶⁹ Ga			
⁷¹ Ga			

[2]

(b) A mass spectrometer can be used to identify the isotopes in a sample of an element. The diagram below shows a mass spectrometer.

Complete the diagram by adding the names of the processes that take place in each of the four labelled regions.

[4]

(c) A sample of gallium was analysed in a mass spectrometer to produce the mass spectrum below. The relative atomic mass of gallium can be calculated from this mass spectrum.

(i)) Define the term <i>relative atomic mass</i> .		
	[3]		
(ii)	Estimate the percentage composition of each isotope present in the sample.		

[1] (iii) Calculate the relative atomic mass of this sample of gallium. Your answer should

be given to three significant figures.

answer		[2]
--------	--	-----

[Total: 12]

2	Whe	When magnesium is heated in air, it reacts with oxygen to form magnesium oxide.		
			$2Mg(s) + O_2(g) \longrightarrow 2MgO(s)$	
	(a)	Con	nplete the electronic configuration of a magnesium atom.	
		1s ²	[1]	
	(b)	Wha	at is the oxidation state of magnesium in	
		(i)	Mg[1]	
		(ii)	MgO?[1]	
	(c)		en magnesium is heated in air, it also reacts with nitrogen to form solid magnesium de, ${ m Mg_3N_2}$.	
		(i)	Construct an equation, with state symbols, for this reaction between magnesium and nitrogen.	
		(ii)	Suggest why magnesium reacts with air to form much more MgO than ${\rm Mg_3N_2}$.	
	<i>(</i> 1)		[1]	
	(d)		gnesium oxide has an extremely high melting point which makes it suitable as a g for furnaces.	
		Ехр	lain, in terms of its structure and bonding, why magnesium oxide has this property.	

	5	
(e)	When magnesium oxide is added to warm dilute nitric acid, a reaction takes place forming a solution of magnesium nitrate.	е
	$MgO(s) + 2HNO_3(aq) \longrightarrow Mg(NO_3)_2(aq) + H_2O(l)$	
	A student reacted 0.0500 mol MgO with 0.400 mol dm ⁻³ nitric acid.	
	(i) What would you see during this reaction?	
	[1]
	(ii) Calculate the mass of MgO that reacted.	
]	2]
	(iii) Calculate the volume of 0.400 mol dm⁻³ HNO₃ required to react exactly with th amount of MgO.	is
		01
		2]
(f)	The solution formed in this reaction contains ions.	
	(i) Why does this solution conduct electricity?	

......[1]

.....[2]

[Total: 17]

(ii) State the formulae of two ions present in this solution.

3	This	s que	estion is about chlorine and chlorine compounds.	
	(a)	Chl	orine reacts with water to form a solution.	
			$Cl_2(g) + H_2O(I) \longrightarrow HCl(aq) + HOCl(aq)$	
		(i)	Why is chlorine added to water on a large scale?	
			[1]
		(ii)	Green universal indicator is added to this solution.	
			What colour changes would you see	
			immediately[1]
			after some time?[1]
	(b)		scribe a simple test that you could carry out to show that chloride ions are presen sample of sea water.	t
		rea	gentgent	•
		obs	ervation	
		equ	<i>lation</i> [3]
	(c)	Sor	ne dry-cleaning solvents include the chlorine compound Perc.	
		Per	c has the following percentage composition by mass: Cl. 85.6%; C, 14.4%.	
		The	relative molecular mass of <i>Perc</i> is 166.	
		(i)	Calculate the molecular formula of <i>Perc</i> .	
			ro	,
		(ii)	[3 Suggest why <i>Perc</i> would not react in the test in (b) .	J
		···/		

(d) Sodium chlorate, $NaClO_3$, is a chlorine compound used as a weed killer.

When heated, $NaClO_3$ releases oxygen gas.

$$2NaClO_3(s) \longrightarrow 2NaCl(s) + 3O_2(g)$$

Calculate the volume of $\rm O_2$ that can be formed at room temperature and pressure by heating 4.26 g of NaClO $_3$.

1 mol of gas molecules occupies 24.0 dm³ at room temperature and pressure.

[4]

[Total: 14]

4 The first six successive ionisation energies of an element **D** are shown in Table 4.1 below.

Table 4.1

olomont		i	onisation ene	ergy / kJ mol ⁻¹	l	
element	1st	2nd	3rd	4th	5th	6th
D	1086	2353	4621	6223	37832	47278

(a)	Define the term <i>first</i> ionisation energy.
	[3]
(b)	Write an equation, with state symbols, to represent the ${\it third}$ ionisation energy of element ${\it D}$.
	[2]
(c)	Use Table 4.1 to deduce which group of the Periodic Table contains element D . Explain your answer.
	group
	explanation
	[3]
	[Total : 8]

•	the Group 2 elements Be-Ra
_	
•	the Period 3 elements, Na-Ar.
••••	
••••	
••••	

[Total : 9]

Subject: Chemistry Foundation

Code: 2811

Session: January

Year: 2003

Final Mark Scheme

25/1/2003

MAXIMUM MARK

60

	/	= alternative and acceptable answers for the same marking point
	;	= separates marking points
Abbreviations,	NOT	= answers which are not worthy of credit
annotations and	()	= words which are not essential to gain credit
conventions used in the Mark Scheme		= (underlining) key words which must be used to gain credit
and Mark Continue	ecf	= error carried forward
	AW	= alternative wording
	ora	= or reverse argument

1. (a)

isotope number of protons neutrons electrons

69Ga 31 38 31

71Ga 31 40 31

(b)

(c) (i) average mass/weighted mean/average mass of an atom / the isotopes ✓ compared with carbon-12 ✓

1/12th of mass of carbon-12/on a scale where carbon-12 is 12 \checkmark

not 12 g

or... mass of 1 mole of atoms ✓ compared with carbon-12 ✓

1/12th of mass of 1 mol of carbon-12/on a scale where carbon-12 is 12 \mathbf{g} (3)

(ii) ⁶⁹Ga: 61%; ⁷¹Ga: 39% ✓ (allow 62/38 —→ 69.76 below)

[1]

[2]

[2]

[4]

(iii) $A_r = 69 \times 61/100 + 71 \times 39/100 = 69.78 \checkmark = 69.8 \checkmark$

ignore g / grammes

[Total: 12 marks]

```
(a) 1s^22s^22p^63s^2
2
                                                                                                                  [1]
                 Mg: 0 ✓
     (b) (i)
                                                                                                                  [1]
           (ii) MgO: +2 /2/II ✓
                                                                                                                  [1]
                          3Mg(s) + N_2(g) \longrightarrow Mg_3N_2(s) \checkmark \checkmark
        (c)
              1 for correct formulae and balancing; 1 for correct state symbols
                                                                                                                  [2]
           (ii) N<sub>2</sub> is less reactive than O<sub>2</sub>/
                bond between N atoms is stronger than bond between O atoms /
                nitrogen has a triple bond and oxygen has a double bond
                activation energy of N > activation energy of O ✓
                 The emphasis here should be a comparison for the mark
                                                                                                                  [1]
     (d) MgO has a giant structure ✓
           MgO is ionic / charged magnesium and oxide ions shown ✓
           strong forces ✓
                                                                                                                  [3]
            (i) MgO dissolves/disappears ✓
     (e)
                                                                                                                  [1]
            (ii) m(MgO) = 24.3 + 16 = 40.3 (g mol^{-1}) \checkmark (accept 40)
                mass MgO = 0.0500 \times 40.3 = 2.015 \text{ g} / 2.02 \text{ g} / 2.01 \text{ g} / 2 \text{ g}
                          g is needed here
                                                                                                                  [2]
           (iii) moles HNO_3 = 2 \times 0.0500 = 0.100 \text{ mol} \checkmark
                 right or wrong for 1st mark
                volume HNO<sub>3</sub> = 0.25 \text{ dm}^3 / 250 \text{ cm}^3 \checkmark
                i.e. moles HNO_3/0.400 \text{ dm}^3 / 1000 \text{ x moles } HNO_3/0.400 \text{ cm}^3
                0.05/0.400 \longrightarrow 0.125 \text{ dm}^3 / 125 \text{ cm}^3 would score 1 mark as molar ratio not used
                                                                                                                  [2]
            (i) ions move / free ions ✓
     (f)
                                                                                                                  [1]
            (ii) Mg^{2+}/NO_3^{-}/H^+/OH^- \checkmark \checkmark 2 max
                                                                                                                  [2]
                                                                                                 [Total: 17 marks]
```

(i) purification/sterilisation/kills *or* removes germs/disinfects ✓ 3. (a) **not** 'to make bleach' **not** 'cleans the water' [1] (ii) turns red / yellow / orange ✓ then colourless / bleaches ✓ colourless then 'nothing' scores 1 mark colourless then 'red' does not score because overall bleaching is not implied. [2] (b) reagent silver nitrate/Ag⁺ ions ✓ observation white (precipitate) / goes white \checkmark equation $Ag^{+}(aq) + Cl^{-}(aq) \longrightarrow AgCl(s) /$ $NaCl(aq) + AgNO_3(aq) \longrightarrow AgCl(s) + NaNO_3(aq) \checkmark$ (state symbols not required) Fluorine for reagent + 'correct' displacement equation scores 1 mark) [3] CI: C = 85.6/35.5: $14.4/12 \checkmark = 2.4$: 1.2 (c) (i) = 2 : 1 **√** Cl_2C has mass of 83. 166 = 2 x 83 molecular formula = Cl_4C_2 CI: C = $85.6/17: 14.4/12 \longrightarrow CI_4C$ scores 1 mark/ $Cl: C = 85.6/17: 14.4/6 \longrightarrow Cl_2C$ scores 1 mark CI: C = 85.6/35.5: $14.4/6 \longrightarrow$ CIC scores 1 mark [3] (ii) perc is covalent / perc is **not** ionic / C-Cl bond in perc is covalent / no Cl⁻ ions / perc is molecular ✓ [1] (d) $m(NaClO_3) = 106.5 \text{ g mol}^{-1} \checkmark$ moles NaClO₃ = 4.26/106.5 = 0.04 mol \checkmark moles $O_2 = 0.06 \text{ mol } \checkmark$ volume $O_2 = 0.06 \times 24 = 1.44 \text{ (dm}^3) \checkmark$ If no molar ratio has been used, ans \longrightarrow 0.96 dm³: worth 3 marks

[4]

4. (a) Energy change when each atom in 1 mole ✓

of gaseous atoms ✓

loses an electron ✓ (to form 1 mole of gaseous 1+ ions).

1 mole of gaseous atoms loses 1 mole of electrons would score all 3 marks

$$\mathbf{D}(g) \longrightarrow \mathbf{D}^{+}(g) + e^{-}$$
 scores 2 marks

$$\mathbf{D}(g) \longrightarrow \mathbf{D}^{+}(g) + e^{-} \Delta H / I.E. \dots kJ \text{ mol}^{-1}$$
 scores 3 marks

[3]

(b)
$$D^{2+}(g) \longrightarrow D^{3+}(g) + e^{-} \checkmark \checkmark$$

(1st mark for equation; 2nd mark for state symbols

'-' **not** required in e⁻; ignore wrong '**D**' except if H or He used; **X** is acceptable

[2]

(c) Group 4 ✓

Sharp rise in successive ionisation energy between 4th and 5th IE \checkmark

marking a change to a new shell/energy level / there are 4 electrons in the outer shell ✓

mention of 'orbital' or 'sub-shell cancels the 'shell mark'

Each marking point in (c) is independent

[3]

[Total: 8 marks]

5. **Group 2**

atomic radii increases down group ✓

down group, electrons added to a new shell / more shells ✓

down group, **more** shielding ✓ : '**more**' is essential

increased nuclear charge outweighed / despite increased nuclear charge ✓

Period 3

atomic radii decrease across period ✓

number of protons/nuclear charge increases ✓

across period, electrons added to same shell / same or similar shielding ✓

nuclear attraction increases / shell drawn in by increased nuclear charge ✓

watch for distinction between nuclear **attraction** and nuclear **charge** in candidates' scripts.

[8]

Quality of Written Communication

At least **two** complete sentences that are legible and where the spelling, punctuation and grammar allow the meaning to be clear. \checkmark

[1]

[Total: 9 marks]
