

hour

OXFORD	CAMBRIDGE AND RSA EXAMI	NATIONS	
Advanced	Subsidiary GCE		
CHEMIS'	TRY		2811
Foundatio	n Chemistry		
Friday	17 JANUARY 2003	Morning	1 hou
	nswer on the question paper.		

Additional materials: Scientific calculator Data Sheet for Chemistry

Candidate Name	Centre Number	Candidate Number

TIME 1 hour

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above. •
- Answer all the questions.
- Write your answers in the spaces on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each . question or part question.
- You will be awarded marks for the quality of written communication . where this is indicated in the question.
- You may use a scientific calculator. .
- You may use the Data Sheet for Chemistry. .
- You are advised to show all the steps in any calculations.

FOR EX	FOR EXAMINER'S USE			
Qu.	Max.	Mark		
1	12			
2	17			
3	14			
4	8			
5	9			
TOTAL	60			

This question paper consists of 10 printed pages and 2 blank pages.

MMI 2040 2/02 624467/4

- 1 Gallium, atomic number 31, exists naturally as a mixture of its isotopes, ⁶⁹Ga and ⁷¹Ga.
 - (a) Complete the table below to show the atomic structure of each isotope of gallium.

isotope	number of				
	protons	neutrons	electrons		
⁶⁹ Ga					
⁷¹ Ga					

(b) A mass spectrometer can be used to identify the isotopes in a sample of an element. The diagram below shows a mass spectrometer.

Complete the diagram by adding the names of the processes that take place in each of the four labelled regions.

[4]

[2]

(c) A sample of gallium was analysed in a mass spectrometer to produce the mass spectrum below. The relative atomic mass of gallium can be calculated from this mass spectrum.

[Total : 12]

For Examiner's Use

(a)	Cor	nplete the electronic configuration of a magnesium atom.	
	1s²		[1]
(b)	Wh	at is the oxidation state of magnesium in	
	(i)	Mg	[1]
	(ii)	MgO?	[1]

When magnesium is heated in air, it reacts with oxygen to form magnesium oxide.

 $2Mg(s) + O_2(g) \longrightarrow 2MgO(s)$

2

- (c) When magnesium is heated in air, it also reacts with nitrogen to form solid magnesium nitride, Mg₃N₂.
 - (i) Construct an equation, with state symbols, for this reaction between magnesium and nitrogen.
 - (ii) Suggest why magnesium reacts with air to form much more MgO than Mg_3N_2 .

(d) Magnesium oxide has an extremely high melting point which makes it suitable as a lining for furnaces. Explain, in terms of its structure and bonding, why magnesium oxide has this property.

.....[3]

(e)	When magnesium oxide is added to warm dilute nitric acid, a reaction take forming a solution of magnesium nitrate.	es place
	$MgO(s) + 2HNO_{3}(aq) \longrightarrow Mg(NO_{3})_{2}(aq) + H_{2}O(I)$	
	A student reacted 0.0500 mol MgO with 0.400 mol dm ^{-3} nitric acid.	
	(i) What would you see during this reaction?	
		[1]
	(ii) Calculate the mass of MgO that reacted.	
		[2]
	(iii) Calculate the volume of 0.400 mol dm ⁻³ HNO ₃ required to react exactly $\frac{1}{2}$	with this
	amount of MgO.	
		[2]
(f)	The solution formed in this reaction contains ions.	
	(i) Why does this solution conduct electricity?	
		[1]
	(ii) State the formulae of two ions present in this solution.	
		[2]
		otal : 17]
	זדן	otal : 17]

For Examiner's Use

This	soue	estion is about chlorine and chlorine compounds.
	•	orine reacts with water to form a solution.
(a)	Ulli	
		$Cl_2(g) + H_2O(I) \longrightarrow HCl(aq) + HOCl(aq)$
	(i)	Why is chlorine added to water on a large scale?
	(ii)	Green universal indicator is added to this solution.
		What colour changes would you see
		immediately[1]
		after some time?[1]
(b)		scribe a simple test that you could carry out to show that chloride ions are present sample of sea water.
	rea	gent
	obs	ervation
	equ	ation[3]
(c)	Sor	ne dry-cleaning solvents include the chlorine compound Perc.
	Per	c has the following percentage composition by mass: Cl. 85.6%; C, 14.4%.
	The	e relative molecular mass of <i>Perc</i> is 166.
	(i)	Calculate the molecular formula of Perc.
		[3]
	(ii)	Suggest why <i>Perc</i> would not react in the test in (b) .
	()	

3

For Examiner's Use

.

(d) Sodium chlorate, $NaClO_3$, is a chlorine compound used as a weed killer.

When heated, $NaClO_3$ releases oxygen gas.

 $2NaClO_3(s) \longrightarrow 2NaCl(s) + 3O_2(g)$

Calculate the volume of O_2 that can be formed at room temperature and pressure by heating 4.26 g of NaClO₃.

1 mol of gas molecules occupies 24.0 dm³ at room temperature and pressure.

[4]

[Total : 14]

4 The first six successive ionisation energies of an element **D** are shown in Table 4.1 below.

Table 4.1

alamant			ionisation ene	ergy/kJmol ^{_*}		
element	1st	2nd	3rd	4th	5th	6th
D	1086	2353	4621	6223	37832	47278

(a) Define the term *first* ionisation energy.

	[3]
(b)	Write an equation, with state symbols, to represent the third ionisation energy of element ${\bf D}.$
	[2]
(c)	Use Table 4.1 to deduce which group of the Periodic Table contains element D . Explain your answer.
	group
	explanation
	[3]
	[Total : 8]

5	In this question, one mark will be awarded for the quality of written communication.
	In the Periodic Table, describe and explain the trend in atomic radii shown by
	• the Group 2 elements Be-Ra
	• the Period 3 elements, Na-Ar.
	[8]
	Quality of Written Communication [1]
	[Total : 9]

RECOGNISING ACHIEVEMENT

Subject: Chemistry Foundation Code: 2811

Session: January Year: 2003

Final Mark Scheme

25/1/2003

MAXIMUM MARK

60

	/	 alternative and acceptable answers for the same marking point
	;	 separates marking points
Abbreviations,	NOT	 answers which are not worthy of credit
annotations and	()	 words which are not essential to gain credit
conventions used in the Mark Scheme		 (underlining) key words which <u>must</u> be used to gain credit
	ecf	= error carried forward
	AW	 alternative wording
	ora	 or reverse argument

1. (a)

isotope	number of			
isotope	protons	neutrons	electrons	
⁶⁹ Ga	31	38	31	
⁷¹ Ga	31	40	31	

(b)

acceleration/ accelerator ✓ ignore 'atoms' beyond 1st stage ionisation/ electron bombardment/ ioniser ✓ not electron gun

[4]

[2]

(c) (i) average mass/weighted mean/average mass of an atom / the isotopes ✓
 compared with carbon-12 ✓

1/12th of mass of carbon-12/on a scale where carbon-12 is 12 \checkmark

not 12 g

or... mass of 1 mole of atoms ✓

compared with carbon-12 \checkmark

1/12th of mass of 1 mol of carbon-12/on a scale where carbon-12 is 12 g \checkmark [3]

[1]

(iii) $A_r = 69 \times 61/100 + 71 \times 39/100 = 69.78 \checkmark = 69.8 \checkmark$

ignore g / grammes [2]

[Total: 12 marks]

2	(a)	$1s^22s^22p^63s^2$	
			[1]
	(b)	i) Mg: 0 ✓	
			[1]
		(ii) MgO: +2 / 2 / II ✓	[4]
	((i) $3Mg(s) + N_2(g) \longrightarrow Mg_3N_2(s) \checkmark \checkmark$ 1 for correct formulae and balancing; 1 for correct state symbols	[1]
			[2]
		(ii) N_2 is less reactive than $O_2/$	
		bond between N atoms is stronger than bond between O atoms /	
		nitrogen has a triple bond and oxygen has a double bond	
		activation energy of N > activation energy of O \checkmark	
		The emphasis here should be a comparison for the mark	[4]
			[1]
	(d)	MgO has a giant structure ✓	
		MgO is ionic / charged magnesium and oxide ions shown \checkmark	
		strong forces 🗸	
			[3]
	(e)	(i) MgO dissolves/disappears ✓	[0]
	()		[1]
		(ii) $m(MgO) = 24.3 + 16 = 40.3 (g mol^{-1}) \checkmark (accept 40)$	
		mass MgO = 0.0500 x 40.3 = 2.015 g / 2.02 g / 2.01 g / 2 g ✓	
		g is needed here	
			[2]
		(iii) moles $HNO_3 = 2 \times 0.0500 = 0.100 \text{ mol} \checkmark$	
		right or wrong for 1st mark	
		volume HNO ₃ = 0.25 dm ³ / 250 cm ³ \checkmark	
		i.e. moles HNO ₃ /0.400 dm³ / 1000 x moles HNO ₃ /0.400 cm³	
		0.05/0.400 \longrightarrow 0.125 dm ³ / 125 cm ³ would score 1 mark as molar ratio not use	əd
			[2]
	<i>(1</i>)	(i) iono movo / froo iono x	
	(f)	(i) ions move / free ions ✓	[4]
		(ii) Mg ²⁺ /NO ₃ [−] / H ⁺ /OH ⁻ ✓ ✓ 2 max	[1]

[2] [Total: 17 marks] (a) (i) purification/sterilisation/kills *or* removes germs/disinfects ✓
 not 'to make bleach' not 'cleans the water'

(ii) turns red / yellow / orange ✓
 then colourless / bleaches ✓
 colourless then 'nothing' scores 1 mark
 colourless then 'red' does **not** score because overall bleaching is not implied.

[1]

(b) reagent silver nitrate/Ag⁺ ions ✓ mark independently observation white (precipitate) / goes white \checkmark $Ag^{+}(aq) + Cl^{-}(aq) \longrightarrow AgCl(s) /$ equation $NaCl(aq) + AgNO_3(aq) \longrightarrow AgCl(s) + NaNO_3(aq) \checkmark$ (state symbols not required) Fluorine for reagent + 'correct' displacement equation scores 1 mark) [3] CI : C = 85.6/35.5 : $14.4/12 \checkmark = 2.4$: 1.2(c) (i) = 2:1 ✓ Cl_2C has mass of 83. 166 = 2 x 83 molecular formula = CI_4C_2 \checkmark $CI: C = 85.6/17: 14.4/12 \longrightarrow CI_4C$ scores 1 mark / $CI: C = 85.6/17: 14.4/6 \longrightarrow CI_2C$ scores 1 mark $CI: C = 85.6/35.5: 14.4/6 \longrightarrow CIC$ scores 1 mark [3] (ii) perc is covalent / perc is not ionic / C-Cl bond in perc is covalent / no Cl⁻ ions / perc is molecular 🗸 [1]

(d) $m(NaClO_3) = 106.5 \text{ g mol}^{-1} \checkmark$ moles $NaClO_3 = 4.26/106.5 = 0.04 \text{ mol} \checkmark$ moles $O_2 = 0.06 \text{ mol} \checkmark$ volume $O_2 = 0.06 \text{ x } 24 = 1.44 \text{ (dm}^3) \checkmark$ *If no molar ratio has been used, ans* $\longrightarrow 0.96 \text{ dm}^3$: worth 3 marks

> [4] [Total:14 marks]

- 4. (a) Energy change when each atom in 1 mole ✓ of gaseous atoms ✓ loses an electron ✓ (to form 1 mole of gaseous 1+ ions).
 1 mole of gaseous atoms loses 1 mole of electrons would score all 3 marks
 D(g) → D⁺(g) + e⁻ scores 2 marks
 D(g) → D⁺(g) + e⁻ △H / I.E.kJ mol⁻¹ scores 3 marks
 - (b) D²⁺(g) → D³⁺(g) + e⁻ √ √
 (1st mark for equation; 2nd mark for state symbols
 '-' not required in e⁻; ignore wrong 'D' except if H or He used; X is acceptable

[2]

[3]

(c) Group 4 ✓

Sharp rise in successive ionisation energy between 4th and 5th IE \checkmark

marking a change to a new shell/energy level / there are 4 electrons in the outer shell

mention of 'orbital' or 'sub-shell cancels the 'shell mark'

Each marking point in (c) is independent

[3]

[Total: 8 marks]

5. Group 2

atomic radii increases down group ✓

down group, electrons added to a new shell / more shells \checkmark

down group, **more** shielding ✓ : *'more'* is essential

increased nuclear charge outweighed / despite increased nuclear charge \checkmark

Period 3

atomic radii decrease across period 🗸

number of protons/nuclear charge increases 🗸

across period, electrons added to same shell / same or similar shielding 🗸

nuclear attraction increases / shell drawn in by increased nuclear charge \checkmark

watch for distinction between nuclear **attraction** and nuclear **charge** in candidates' scripts.

Quality of Written Communication

At least **two** complete sentences that are legible and where the spelling, punctuation and grammar allow the meaning to be clear. \checkmark

[1] [Total: 9 marks]

[8]