Answer all the questions.

1 The element titanium, Ti, atomic number 22, is a metal that is used in the aerospace industry for both airframes and engines.

A sample of titanium for aircraft construction was analysed using a mass spectrometer and was found to contain three isotopes, 46 Ti, 47 Ti and 48 Ti. The results of the analysis are shown in Table 1.1 below.

Table 1.1

isotope	⁴⁶ Ti	⁴⁷ Ti	⁴⁸ Ti
relative isotopic mass	46.00	47.00	48.00
percentage composition	8.9	9.8	81.3

(a)	(i)	Expla	ain the term <i>isc</i>	otopes.			
		•••••					
							[1]
	(ii)	Comp	plete the table	below for atom	s of two of the	titanium isoto	pes.
			isotope	protons	neutrons	electrons	
			⁴⁶ Ti				
			⁴⁷ Ti				[2]
(b)	tita	nium.		Table 1.1, cald		ive atomic ma	ass of this sample of
							[2]
(c)	Co	mplete	the electronic	configuration o	of a titanium ato	om.	
	1s ²	² 2s ² 2p ⁶	S			•••••	[1]

(d)	Tita	nium has metallic bonding.	
	(i)	Explain what is meant by metallic bonding. Use a diagram in your answer.	
			• • • • • • • • • • • • • • • • • • • •
			[2]
	(ii)	How does metallic bonding allow titanium to conduct electricity?	
			•••••
	_		[1]
(e)		udent reacted 1.44 g of titanium with chlorine to form 5.70 g of a chloride X.	
	(i)	How many moles of Ti atoms were reacted?	
	/155		[1]
	(ii)	How many moles of Cl atoms were reacted?	
			[2]
((iii)	Determine the empirical formula of X .	
			[1]
((iv)	Construct a balanced equation for the reaction between titanium and chlorine.	
			[1]
	(v)	At room temperature, X is a liquid which does not conduct electricity. What d this information suggest about the bonding and structure in X ?	oes
			.[2]

[Total: 16]

2	was	disc	up 2 element radium, Ra, is used in medicine for the treatment of cancer. Radium covered in 1898 by Pierre and Marie Curie by extracting radium chloride from its pitchblende.
	(a)	Pre	dict the formula of radium chloride.
			[1]
	(b)		re and Marie Curie extracted radium from radium chloride by reduction. lain what is meant by <i>reduction</i> , using this reaction as an example.
			[2]
	(c)	Rac	lium reacts vigorously when added to water.
		Ra(s) + $2H_2O(I) \rightarrow Ra(OH)_2(aq) + H_2(g)$
		(i)	Use the equation to predict two observations that you would see during this reaction.
			[2]
		,\	
		(ii)	Predict a pH value for this solution.
			[1]
	(d)	rem	actions of the Group 2 metals involve removal of electrons. The electrons are loved more easily as the group is descended and this helps to explain the increasing ad in reactivity.
		(i)	The removal of one electron from each atom in 1 mole of gaseous radium atoms is
			called the[2]
			The equation for this process in radium is:
			[2]
		(ii)	Atoms of radium have a greater nuclear charge than atoms of calcium.
			Explain why, despite this, less energy is needed to remove an electron from a radium atom than from a calcium atom.
			[3]

3	acio	а. н	ent had a stomach-ache and needed to take something to neutralise excess stomach le decided to take some Milk of Magnesia, which is an aqueous suspension of sium hydroxide, Mg(OH) ₂ .
	(a)	Th eq	e main acid in the stomach is hydrochloric acid, HC l(aq), and the unbalanced uation for the reaction that takes place with Milk of Magnesia is shown below.
			$Mg(OH)_2(s) +HCl(aq) \rightarrowMgCl_2(aq) +H_2O(l)$
		Ba abo	lance the equation by adding numbers where necessary in the unbalanced equation ove.
	(b)	0.1	e student's stomach contained 500 cm ³ of stomach fluid with an acid concentration of 08 mol dm ⁻³ . The student swallowed some Milk of Magnesia containing 2.42 g (OH) ₂ . He wondered whether this dose was sufficient to neutralise the stomach acid.
		Ass	sume that all the acid in the stomach fluid was $0.108\mathrm{moldm^{-3}}$ hydrochloric acid.
		(i)	How many moles of HCl were in the 500 cm ³ of stomach fluid?
		(ii)	Calculate the mass of Mg(OH) ₂ necessary to neutralise this stomach fluid.
			[3]
	(iii)	Determine whether the student swallowed too much, too little, or just the right amount of Milk of Magnesia to neutralise the stomach acid.
			[1]
		ınaıç	wing chalk has been used for many years to combat excess stomach acid and gestion tablets often contain calcium carbonate, CaCO ₃ . Suggest, with the aid of an ation, how these tablets work.
		•••••	
		•••••	
			[2]
			[Total: 8]

Chlorine is used in the preparation of many commercially important materials such as bleach and iodine.
(a) Bleach is a solution of sodium chlorate(I), NaOC1, made by dissolving chlorine in aqueous sodium hydroxide.
$Cl_2(g) + 2NaOH(aq) \rightarrow NaOCl(aq) + NaCl(aq) + H_2O(l)$
Determine the changes in oxidation number of chlorine during the preparation of bleach and comment on your results.
[3]
(b) Iodine is extracted commercially from seawater with chlorine gas. Seawater contains very small quantities of dissolved iodide ions, which are oxidised to iodine by the chlorine gas.
(i) Write an ionic equation for the reaction that has taken place.
[2]
(ii) Use your understanding of electronic structure to explain why chlorine is a stronger oxidising agent than iodine.
[2]
[Total: 7]

i In tei	this c	uestion, one mark is available for the quality of use and organisation of scientific
Ni co	troger mpou	and oxygen are elements in Period 2 of the Periodic Table. The hydrogen nds of oxygen and nitrogen, H ₂ O and NH ₃ , both form hydrogen bonds.
(a)) (i)	Draw a diagram containing two H ₂ O molecules to show what is meant by <i>hydrogen bonding</i> . On your diagram, show any lone pairs present and relevant dipoles.
		[3]
	(ii)	State and explain two anomalous properties of water resulting from hydrogen bonding.
(b)	The	'dot-and-cross' diagram of an ammonia molecule is shown below.
		Ha N aH
	Pred	dict, with reasons, the bond angle in an ammonia molecule.
	•••••	
	•••••	
	•••••	

.....[4]

(c) The atomic radii of nitrogen and oxygen are shown below.

element	nitrogen	oxygen
atomic radius /nm	0.075	0.073

Explain why a nitrogen atom is larger than an oxygen atom.
[4]
Quality of Written Communication [1]
[Total: 16]
[104411 10]

END OF QUESTION PAPER

Abbreviation annotations convention used in the Scheme	s and s	/ = alternative and acceptable answers for the same marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument	
Question		Expected Answers	Marks
1 (a)	(i)	atoms of same element/same atomic number with different numbers of neutrons/different masses ✓	[1]
	(ii)	isotope protons neutrons electrons 46Ti 22 24 22 ✓	
		⁴⁷ Ti 22 25 22 ✓	[2]
(b)		$A_{r} = \frac{(46 \times 8.9) + (47 \times 9.8) + (48 \times 81.3)}{100} / 47.724 \checkmark$ $= 47.7 \checkmark$	[2]
(c)		1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ² 4s ² ✓	[1]
(d)	(i)	⊕ -⊕ -⊕ ⊕ -⊕ -⊕ -⊕ ⊕ -⊕ -⊕	
		positive ions ✓ electrons ✓ (must be labelled)	[2]
! :	(ii)	electrons move ✓	[1]
(e)	(i)	moles Ti = 1.44/47.9 = 0.0301 mol/0.03 mol (accept use of answer from (b))	[1]
	(ii)	mass of CI = $5.70-1.44 = 4.26$ g \checkmark moles CI = $4.26/35.5 = 0.120$ mol \checkmark $5.70/35.5 = 0.161$ mol gets 1 mark	[2]
	(iii)	Ti:Cl = 0.0301 : 0.12 = 1:4. Empirical formula = TiCl₄ ✓ 0.0301 : 0.161 mol gives TiCl₅ for 1 mark	[1]
	(iv)	Ti + 2Cl₂ → TiCl₄ ✓ (ecf possible from (iii) covalent ✓	[1]
	(v)	simple molecular ✓	[2]
			Total: 16

anno: conve	eviations, tations and entions in the Marl me	NOT = answers which are not worthy of credit	
Ques	stion	Expected Answers	Marks
2	(a)	RaCl₂ ✓	[1]
_	(b)	Reduction is gain of electrons/decrease in oxidation number ✓ Ra²⁺ gains 2 electrons → Ra/ Oxidation state goes from +2 in RaCl₂ → 0 in Ra ✓	[2]
	(c) (i)	effervescence/bubbles ✓ Ra disappears/dissolves ✓	[2]
	(ii	8-14 🗸	[1]
	(d) (i)	Ra(g) → Ra [†] (g) + e ⁻ ✓ ✓ 1 mark for equation 1 mark for state symbols '-' not required on 'e' etemic radii of Ra > stemic radii of Ca/	[2]
			[3]
			Total: 13

annotations and conventions = separates marking NOT = answers which are () = words which are no	not worthy of credit t essential to gain credit ords which <u>must</u> be used to gain credit d
Question Expected Answers	Marks
	$H_1 \rightarrow \dots MgCl_2(aq) + 2\dots H_2O(l)$ [1]
(b) (i) moles HCl = 0.108 x 500/10	00 = 0.054 ✓ [1]
moles Mg(OH) ₂ = ½ x mole molar mass of Mg(OH) ₂ = 24 (do not penalise 24) mass Mg(OH) ₂ = 58.3 x 0.02 (accept ans from (ii) x 0.027 (mass Mg(OH) ₂ of 3.15 g wo molar ratio has not been ide	4.3 + 17x2 = 58.3 ✓ 27 = 1.57 g / 1.5741 g ✓ = 1.566 g) ould score 2 marks as 'ecf as [3]
(iii) Too much if 2.42 g (dose) > (If answer to (ii) > 2.42 g the be 'Not enough'	ans to (ii) ✓ n 'correct' response here would [1]
(c) CaCO ₃ reacts with (or neutral (or CaCO ₃ + HCl in an equat	
CaCO₃ + 2HCl → CaCl₂ + (correct equation would score	
	Total: 8

Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument	
Question	Expected Answers	Marks
4 (a)	Cl₂(g) → NaOCl(aq) : Cl(0) → Cl(+1) ✓ Cl₂(g) → NaCl(aq) : Cl(0) → Cl(-1) ✓ Cf is both oxidised (in forming NaOCl) and reduced (in forming NaCl)/disproportionation Cf reduces Cf to form NaCl AND Cf oxidises Cf in forming NaOCl ✓	[3]
(b) (i)	Cl ₂ + 2l ⁻ → l ₂ + 2Cl ⁻ ✓ ✓ 1 mark for species. 1 mark for balancing	[2]
(ii)	Cl atom is smaller/has less shells ✓ electron to be captured will be attracted more ✓	[2]
		Total: 7

Abbreviations, annotations and conventions used in the Mark Scheme Abbreviations		
Question	Expected Answers	Marks
5 (a) (i)	H bonding from O of 1 H₂O molecule to H of another ✓ dipoles shown ✓ with lone pair involved in bond ✓	[3]
(ii)	Two properties from: Ice is lighter than water/ max density at 4°C ✓ explanation: H bonds hold H₂O molecules apart / open lattice in ice / H-bonds are longer ✓	
	Higher melting/boiling point than expected ✓ explanation: strength of H bonds that need to be broken ✓ must imply that intermolecular bonds are broken	
	High surface tension/viscosity ✓ explanation strength of H bonds across surface ✓	[4]
(b)	NH ₃ : 107° ✓ (range 106 – 108°) electron pairs repel other electron pairs ✓ lone pair has more repulsion ✓ electron pairs get as far apart as possible ✓	[4]
(c)	N has less protons than O (ora) ✓ electrons are in same shell /have same or similar shielding ✓ weaker nuclear attraction in N (ora) ✓ shell drawn in less by nuclear charge in N (ora) ✓ watch for distinction between nuclear attraction and nuclear charge in candidates' scripts.	[4]
	QoWC: links together two statements in at least two of the sections (a)(ii), (b) and (c)	[1]
		Total: 16