Downloaded from http://pastpapers.org

Mark Scheme 2811 January 2006

FOUNDATION CHEMISTRY

Abbreviations, annotations and conventions used in the Mark Scheme		/ = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument		
Question		Expected Answers	Marks	
1 (a)	(i) (ii)	ionisation ✓ deflection ✓ detection ✓		
		protons neutrons electrons 25 Mg 12 13 12 ✓ 26 Mg 12 14 12 ✓	[2]	
	(iii)	$1s^{2}2s^{2}2p^{6}3s^{2}\checkmark$ $24 \times 78.60/100 + 25 \times 10.11/100 + 26 \times 11.29/100 \checkmark$	[1]	
	(iv)	= 24.33 \(\sqrt{calc}\) (calc value: 24.3269. This scores one mark) 24.32 with no working, award 1 mark only. 24.3 with no working, no marks (Periodic Table value)	[2]	
(b)	(i) (ii)	⊕ -⊕ -⊕ ⊕ -⊕ -⊕ ⊕ -⊕ -⊕ positive ions ✓ electrons ✓ (must be labelled) If Mg ²⁺ shown then must be correct: Mg ⁺ not worthy electrons move ✓	[2]	
(c)	(i)	Oxidation state goes from 0 in O₂ ✓	[1]	
	.,	\longrightarrow -2 in MgO \checkmark	[2]	
	(ii)	or with Mg full shell. correct dot and cross \checkmark ; correct charges \checkmark	[2]	
(d)	(i)	MgO has reacted with CO₂ ✓	[1]	
	(ii)	Solid dissolves / disappears ✓ Fizzing / bubbles ✓ MgO + 2HCl → MgCl ₂ + H ₂ O ✓ MgCO ₃ + 2HCl → MgCl ₂ + CO ₂ + H ₂ O ✓ both reactions form magnesium chloride/MgCl ₂ ✓	[2]	
	 -		[3] Total: 20	

Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument	
Question	Expected Answers	Marks
2 (a) (i)	mark vertically: H ₂ O NH ₃ 2 3 2 1	[2]
(ii)	3D Diagram required or diagram with name labelled bond angle required NH₃ pyramidal molecule shown ✓ 107 ° ✓ (106-108°) 5O₂ non-linear molecule shown ✓ 110 - 130 ° ✓	[4]
(b) (i)	oxygen/ nitrogen is more electronegative/ molecule has atoms with different electronegativities /oxygen/more electronegative atom attracts bonded electron pair more 🗸	[1]
(ii)	H bonding from N of 1 NH₃ molecule to H of another NH₃ molecule with a H⁵⁺ shown and a N⁵⁻ shown ✓ with lone pair involved in bond ✓ 2nd mark is available from water molecule(s)	[2]
(c)	ice is less dense than water ✓ hydrogen bonds hold H₂O molecules apart in ice / hydrogen bonds cause an open lattice structure ✓	[2]
(d) (i)	ratio N: H: S: $O = \frac{24.12}{14}$: $\frac{6.94}{1}$: $\frac{27.61}{32.1}$: $\frac{41.33}{16}$: \checkmark = 2:8:1:3 Empirical formula = $N_2H_8SO_3$ \checkmark $N_2H_4SO_3$ is worth 1 mark from consistent use of at nos.	[2]
(ii)	$H_2O + 2NH_3 + SO_2 \longrightarrow (NH_4)_2SO_3 \checkmark$ (Award mark for $N_2H_8SO_3$)	[1]
,, _(,)		Total: 14

Ahhrevi:	ations	/ = alternative and acceptable answers for the same marking	
Abbreviations, annotations and conventions		; = separates marking points	ig point
		NOT = answers which are not worthy of credit	
	the Mark	() = words which are not essential to gain credit	
		= (underlining) key words which <u>must</u> be used to gain cre	+dit
Scheme		ecf = error carried forward	
		AW = alternative wording	
	<u></u>	ora = or reverse argument	
Questio		Expected Answers	Marks
3 (a	a) (i)	goes yellow/orange/brown ✓	[1]
	(ii)	$Cl_2 + 2Br^- \longrightarrow Br_2 + 2Cl^- \checkmark \checkmark$	[2]
	(,	OR	[2]
		$Cl_2 + 2KBr \longrightarrow Br_2 + 2KCl$	
		1 mark for species.	
		1 mark for balancing	
	(iii)	An electron is being gained \checkmark	
	(,	Cl atoms are smaller/less shells (ora) ✓	1
		In Cl, attraction for electrons is greater ✓	507
(h	o) (i)	Amount of substance that has the same number of	[3]
(, (1)		
		particles as there are atoms in 12 g of ¹² C/ 6 × 10 ²³ / Avogadro's Number ✓	
		0 × 10 / Avogaaro's Number •	[1]
		0.275 v.120	
		moles = $\frac{0.275 \times 120}{1000}$ = 0.0330 mol \checkmark	
	(ii)	1000 - 0.0000 (110)	[1]
		0.0330	
		moles $Cl_2 = \frac{0.0330}{2} = 0.0165 \text{ mol } \checkmark$	
	(iii)	volume $Cl_2 = 0.0165 \times 24000 = 396 \text{ cm}^3 \checkmark / 0.396 \text{ dm}^3$	
		792 cm³ worth 1 mark (no molar ratio)	}
		1584 cm³ worth 1 mark (x 2)	[2]
		units needed.	1-2
		bleach / disinfectant /sterilising /killing germs √	
···	(iv)		[1]
<u>(c</u>)	NaClO ₃ ✓	[1]
			Total: 12

Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument		
Question	Expected Answers	Marks	
4 (a)	Energy change when each atom in 1 mole of gaseous atoms of gaseous atoms of loses an electron of (to form 1 mole of gaseous 1+ ions).	[3]	
(b)	From Li → N, ionisation energy increases ✓ number of protons/nuclear charge increases ✓ nuclear attraction increases / shell drawn in by increased nuclear charge/ atomic radius decreases ✓ across period, electrons added to same shell ✓ Not same subshell		
	From Be → B, ionisation energy decreases √ for B, electron is removed from a p sub-shell/p orbital/different sub-shell √ which has a higher energy √		
	watch for distinction between nuclear attraction and nuclear charge in candidates' scripts. Also watch for confusion between shell and subshell.	[7]	
	Al Sharp rise in successive ionisation energy between 3rd and 4th IE marking a change to a new or different shell / there are 3 electrons in the outer shell		
	mention of 'orbital' or 'sub-shell cancels 'shell mark' Each marking point for Al is independent	[3]	
	QoWC: links together two pieces of information correctly within two of the sections below: 1. General trend across period 2. Be to B 3. Successive ionisation energies	[1]	
_		ניז	
		Total: 14	