

RECOGNISING ACHIEVEMENT

Subject: Chemistry Foundation Code: 2811

Session: January Year: 2002

Final Mark Scheme

RR

12th JANUARY 2002

1. (a) Mark vertically or horizontally.

()		,								
			species	number of						
		species	protons	electrons						
			Ca ²⁺	20	18	\checkmark				
			Cl⁻	17	18	\checkmark				
	0					[2]				
(b)	1s ² 2	2s ² 2p ⁶ 3s ² 3p ⁶	✓ 4s ⁰ is	OK						
(a)	<i>(</i> 1)					[1]				
(6)	(1)					[1]				
	(ii)	Ca ²⁺ ion sho	own correc	tly 🗸 ; 2 Cl	[−] ions shown	correctly ✓				
		For Ca ²⁺ , either 8 electrons or no electrons								
		For Cl⁻, dot and crosses required.								
						[2]				
	(iii)	ii) ionic bonds/ionic bonding/electrostatic or ionic attraction/forces 🗸								
	(ii) pH becomes (more) alkaline/increases ✓									
(d)										
		Ca(OH) ₂ forms/hydroxide ions form/H ^{$+$} is removed by electrolysis \checkmark								
		(2nd mark depends on 1st: it 'explains' why the solution becomes alkaline)								
						[2]				
	(ii)	\cdot 'charge carriers' move in aqueous and do not move in solid \checkmark								
		charge carriers are ions 🗸								
		1 st point identifies that something that is charged (electrons/ions/charge carriers) can move and not move when solid.								
		2 nd point identifies what the carriers are.								
		'lons move' in isolation scores 1 mark								
(e)	(i)	Cl₂: 0 ♥								
		HCIO +1	or 1 or 1+ '	\checkmark						
		HCI –1	or 1– 🗸			[3]				
	(ii)	0.003 / 3 x ⁻	10 ⁻³ mol ✔	/						
	(iii)	ii) purification/sterilisation/disinfect/killing bacteria ow✓								
		butnot 'bleach'/ not 'cleaning'/ not 'swimming pools'[1][Total: 16]								

		, , , ,				
2.	(a)	Energy change when each atom in 1 mole ✓ of gaseous atoms ✓				
		loses an electron ✓ (to form 1 mole of gaseous 1+ ions).				
		, <u> </u>	[3]			
	(b)	(i) Electrons added to same shell /same or similar shielding \checkmark				
		increasing nuclear charge/number of protons \checkmark				
		electrons experience greater attraction or pull / atomic radius decreases \checkmark				
			[3]			
		(ii) Al has an electron in the p sub-shell/ has a p electron /different sub-shell/differ type of orbital ✓.	ent			
		(not a different shell or a different orbital)				
		If AI not stated then assume that response applies to it!				
		Al sub-shell at higher energy (than s) 🔨				
			[2]			
	(c)	electron is further from nucleus/ electron in a different shell 🗸 (not sub-shell or orbital))			
		electron experiences more shielding ✓ (<i>more is essential here</i>)				
		nuclear attraction decreases /distance or shielding outweighs nuclear attraction /				
		effective nuclear charge decreases 🗸				
			[3]			
	(d)	First ionisation energy of Ne = 1600 kJ mol ⁻¹ / > 1600 kJ mol ⁻¹ \checkmark				
			[1]			
	(e)	$Al^{2+}(g) \longrightarrow Al^{3+}(g) + e^{-}$ equation \checkmark ; state symbols correct \checkmark				
			[2]			
		[Total:	14]			

Chemistry Foundation

[Total: 16]

[Total: 17]

alternative answers as names:

A calcium oxide/qulicklime; B carbon dioxide; C calcium hydroxide/lime water; D calcium chloride; E water; F calcium hydrogencarbonate/ calcium bicarbonate

[6]
(b) Molar mass of CaCO₃ = 100.1 or 100
$$\checkmark$$

 4×100.1 or 100 g CaCO₃ \checkmark = 400.4 or 400
 $\therefore 25 \times 400.4$ or 400/446.6 kg CaCO₃ = 22.41 or 22.39 kg \checkmark
Accept 22 kg or 22.4 kg
[3]
(c) (i) Ca(OH)₂ + CO₂ \longrightarrow CaCO₃ + H₂O \checkmark ignore state symbols
[1]
(ii) CaCO₃ reacts with acids \checkmark

[1]

[Total: 11]

In this question, 1 mark is available for the quality of written communication. 6. (a) observations: 2 marks chlorine: Cl_2 + bromide \longrightarrow orange/brown/yellow/red in organic solvent \checkmark bromine: Br_2 + iodide \longrightarrow orange/brown/yellow/purple with organic solvent \checkmark equations: 2 marks chlorine: $\mathsf{Cl}_2 \ + \ 2\mathsf{Br}^- \longrightarrow \ \mathsf{Br}_2 \ + \ 2\mathsf{Cl}^- \ / \ \mathsf{Cl}_2 \ + \ 2\mathsf{l}^- \longrightarrow \ \mathsf{l}_2 \ + \ 2\mathsf{Cl}^- \ \checkmark$ bromine: $Br_2 + 2l^- \longrightarrow l_2 + 2Br^- \checkmark$ 2 'correct' unbalanced equations scores 1 mark reactivity: 1 mark Therefore reactivity decreases down group/ $CI_2 > Br_2 > I_2$ / / Cl₂ displaces bromine and iodine AND bromine displaces iodine (this could be shown in a table) ✓ [sub-total: 5] (b) how atom changes: 2 marks as group descends, more shells are added/ increasing radius of atom 🗸 and increased electron shielding \checkmark result: 1 mark down the group,..... electron to be captured experiences less attraction /less effective nuclear charge to capture an electron /electrons gained less easily ✓ It must be clear that an electron is gained through this process to score the mark [sub-total: 3] 8 marking points \longrightarrow [7 max] Q – legible text with accurate spelling, punctuation and grammar \checkmark [1] [Total: 8] **7.** In this question, 1 mark is available for the quality of written communication.

(a) calculate from weighted mean: $79 \times 55.0/100 + 81 \times 45.0/100 \checkmark$

 $A_{\rm r} = 79.9$ **V**

[sub-total: 2]

(b) ionisation by electron beam/bombardment/gun ✓ acceleration/shot along/moved ✓ deflection by magnetic field/with a magnet ✓ deflection depends on mass/lighter particles deflected more ✓ particles travelling are ions ✓ relative heights or peak areas gives the abundance ✓ 6 marking points — [5 max]

[sub-total: 5]

Clear, well-organised, using specialist terms

required use of **all** these words: ionisation, acceleration, deflection, detection \checkmark [1]

[Total: 8]