Subject: Chemistry Foundation
 Code: 2811

Session: January
Year: 2002

Final Mark Scheme

1. (a) Mark vertically or horizontally.

species	number of	
	protons	electrons
Ca^{2+}	20	18
Cl^{-}	17	18

(b) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} \checkmark \quad 4 s^{0}$ is $O K$
(c) (i) $\mathrm{CaCl}_{2} \downarrow$
(ii) Ca^{2+} ion shown correctly $\checkmark ; 2 \mathrm{Cl}^{-}$ions shown correctly For Ca^{2+}, either 8 electrons or no electrons
For Cl^{\prime}, dot and crosses required.
(iii) ionic bonds/ionic bonding/electrostatic or ionic attraction/forces
(d) (i) pH becomes (more) alkaline/increases
$\mathrm{Ca}(\mathrm{OH})_{2}$ forms $/$ hydroxide ions form $/ \mathrm{H}^{+}$is removed by electrolysis \checkmark
(2nd mark depends on 1st: it 'explains' why the solution becomes alkaline)
(ii) 'charge carriers' move in aqueous and do not move in solid \checkmark charge carriers are ions \checkmark
$1^{\text {st }}$ point identifies that something that is charged (electrons/ions/charge carriers) can move and not move when solid.
$2^{\text {nd }}$ point identifies what the carriers are.
'lons move' in isolation scores 1 mark
(e) (i) $\mathrm{Cl}_{2}: 0 \checkmark$
$\mathrm{HClO}+1$ or 1 or $1+\sqrt{ }$
$\mathrm{HCl}-1$ or $1-\sqrt{ }$
(ii) $0.003 / 3 \times 10^{-3} \mathrm{~mol} \checkmark$
(iii) purification/sterilisation/disinfect/killing bacteria ow $\sqrt{ }$ but....not 'bleach'/ not 'cleaning'/ not 'swimming pools'
2. (a) Energy change when each atom in 1 mole $\sqrt{ }$ of gaseous atoms $\sqrt{ }$
loses an electron $\sqrt{ }$ (to form 1 mole of gaseous $1+$ ions).
(b) (i) Electrons added to same shell /same or similar shielding $\sqrt{ }$ increasing nuclear charge/number of protons \checkmark
electrons experience greater attraction or pull / atomic radius decreases \checkmark
(ii) Al has an electron in the p sub-shell/ has a p electron /different sub-shell/different type of orbital $\sqrt{ }$.
(not a different shell or a different orbital)
If AI not stated then assume that response applies to it!
Al sub-shell at higher energy (than s)
(c) electron is further from nucleus/ electron in a different shell \checkmark (not sub-shell or orbital) electron experiences more shielding \checkmark (more is essential here) nuclear attraction decreases /distance or shielding outweighs nuclear attraction / effective nuclear charge decreases \checkmark
(d) First ionisation energy of $\mathrm{Ne}=1600 \mathrm{~kJ} \mathrm{~mol}^{-1} />1600 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(e) $\mathrm{Al}^{2+}(\mathrm{g}) \longrightarrow \mathrm{Al}^{3+}(\mathrm{g})+\mathrm{e}^{-}$equation $\sqrt{ }$; state symbols correct \checkmark
3. (a) (i) oxidation loss of electrons/ increase in oxidation number/gain of $\mathrm{O} / \mathrm{loss}$ of H reduction gain of electrons/ decrease in oxidation number/loss of O/gain of H
(ii) $2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{MgO}(\mathrm{s}) / \mathrm{Mg}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{MgO}(\mathrm{s})$ equation $\sqrt{ }$; state symbols correct $\sqrt{ }$
(iii) oxidation

$$
\mathrm{Mg} \longrightarrow \mathrm{Mg}^{2+}+2 \mathrm{e}^{-}
$$

reduction

$$
\begin{align*}
& \mathrm{O}_{2}+4 \mathrm{e}^{-} \longrightarrow 2 \mathrm{O}^{2-} \quad / 1 / 2 \mathrm{O}_{2}+2 \mathrm{e}^{-} \longrightarrow \mathrm{O}^{2-} \boldsymbol{V} \\
& \text { Ignore state symbols } \tag{2}
\end{align*}
$$

(b) (i) Solid no longer dissolves/ disappears/solid remains Ignore references to changes of $\mathrm{pH} /$ use of indicators
(ii) $25.0 \times 2.00 / 1000=0.0500 \mathrm{~mol}$
(iii) $0.0250 \mathrm{~mol} \mathrm{MgO} \sqrt{\text { (i.e. answer to (ii)/2) }}$
(iv) $M(\mathrm{MgO})=24.3+16=40.3$
$0.0250 \times 40.3 \boldsymbol{}=1.0075 \mathrm{~g}=1.01 \mathrm{~g} \checkmark$
(i.e. answer to (iii) x answer to $M(\mathrm{MgO})$)
(i.e. 1 mark for sig figs. 10.1 g would automatically score both the marks here.)

If a candidate uses 24 for Mg , answer to 3 sig figs is 1.00 g .
[3]
(v) Not a redox reaction because no species changes oxidation number $\sqrt{ }$ evidence of working using actual oxidation numbers of at least one species
(2nd point could well in the equation in part (b). Indicate this with an arrow to show this evidence)
(c) strong forces to be broken/high amount of energy required to break lattice /giant structure
forces between ions/ionic bonding $\sqrt{ }$
[2]
[Total: 16]
4. (a) attraction of an atom/element for electrons in a covalent bond/bonded pair/molecule
[2]
(b)

all 3 correct $\sqrt{ }$; 2 correct scores 1 mark
(c)

dot-and-cross diagram for $\mathrm{NH}_{3} \checkmark$	dot-and-cross diagram for $\mathrm{BF}_{3} \checkmark$
NH_{3}	BF_{3}

(d)

bond angle: $107 \pm 1^{\circ} \checkmark$	bond angle: $120^{\circ} \checkmark$
shape: pyramidal \checkmark	shape: trigonal planar/planar triangle \checkmark

(e) NH_{3} has a non-symmetrical shape/ BF_{3} is symmetrical
in $\mathbf{N H}_{3}$ dipoles do not cancel or there is an uneven charge distribution
/ in $\mathbf{B F}_{3}$ dipoles cancel or there is an even charge distribution \checkmark
(f) H bond shown from N of one NH_{3} molecule to H of another NH_{3} molecule \checkmark
(g) (i) NH_{3} has a lone pair/ $\mathrm{NH}_{4}{ }^{+}$has no lone pair/ $\mathrm{NH}_{4}{ }^{+}$has a dative (covalent) or coordinate bond \downarrow
bonded pair repels less/ lone pair repels more $\sqrt{ }$
not repelling atoms
(ii) Add silver nitrate (solution)/ silver ions
yellow precipitate $\sqrt{ }$
or
Add chlorine/bromine \checkmark
violet in added organic solvent or blue-black colour with added starch
[2]
[Total: 17]
5. (a)

alternative answers as names:
A calcium oxide/qulicklime; B carbon dioxide; C calcium hydroxide/lime water; D calcium chloride; E water; F calcium hydrogencarbonate/ calcium bicarbonate
(b) Molar mass of $\mathrm{CaCO}_{3}=100.1$ or $100 \checkmark$
4×100.1 or $100 \mathrm{~g} \mathrm{CaCO}_{3} \checkmark=400.4$ or 400
$\therefore 25 \times 400.4$ or $400 / 446.6 \mathrm{~kg} \mathrm{CaCO}_{3}=22.41$ or $22.39 \mathrm{~kg} \checkmark$
Accept 22 kg or 22.4 kg
(c) (i) $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{CO}_{2} \longrightarrow \mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O} \checkmark$ ignore state symbols
(ii) CaCO_{3} reacts with acids \checkmark
[Total: 11]
6. In this question, 1 mark is available for the quality of written communication.
(a)
observations: 2 marks
chlorine:
$\mathrm{Cl}_{2}+$ bromide \longrightarrow orange/brown/yellow/red in organic solvent \checkmark
bromine:
$\mathrm{Br}_{2}+$ iodide \longrightarrow orange/brown/yellow/purple with organic solvent
equations: 2 marks
chlorine:
$\mathrm{Cl}_{2}+2 \mathrm{Br}^{-} \longrightarrow \mathrm{Br}_{2}+2 \mathrm{Cl}^{-} / \mathrm{Cl}_{2}+2 \mathrm{I}^{-} \longrightarrow \mathrm{I}_{2}+2 \mathrm{Cl}^{-} \checkmark$
bromine:
$\mathrm{Br}_{2}+2 \mathrm{I}^{-} \longrightarrow \mathrm{I}_{2}+2 \mathrm{Br}^{-}$
2 'correct' unbalanced equations scores 1 mark
reactivity: 1 mark
Therefore reactivity decreases down group/ $\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2} /$
/ Cl_{2} displaces bromine and iodine AND bromine displaces iodine
(this could be shown in a table)
[sub-total: 5]
(b)
how atom changes: 2 marks
as group descends, more shells are added/ increasing radius of atom
and increased electron shielding
result: 1 mark
down the group,.......
electron to be captured experiences less attraction
/less effective nuclear charge to capture an electron
/electrons gained less easily
It must be clear that an electron is gained through this process to score the mark
[sub-total: 3]
8 marking points $\longrightarrow[7$ max]
Q - legible text with accurate spelling, punctuation and grammar $\sqrt{ }$ [1]
[Total: 8]
7. In this question, 1 mark is available for the quality of written communication.
(a) calculate from weighted mean: $79 \times 55.0 / 100+81 \times 45.0 / 100 \checkmark$

$$
A_{\mathrm{r}}=79.9 \checkmark
$$

(b) ionisation by electron beam/bombardment/gun \checkmark
acceleration/shot along/moved \checkmark
deflection by magnetic field/with a magnet \checkmark
deflection depends on mass/lighter particles deflected more \checkmark
particles travelling are ions \checkmark
relative heights or peak areas gives the abundance \checkmark
6 marking points \longrightarrow [5 max]
[sub-total: 5]
Clear, well-organised, using specialist terms required use of all these words: ionisation, acceleration, deflection, detection $\sqrt{\text { [1] }}$
[Total: 8]

