

Subject: Foundation Chemistry Code: 2811

Session: January Year: 2005

FINAL

Mark Scheme	Unit Code	Session	Year	Version
Page 2 of 7	2811	January	2005	FINAL

ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

- 1. Please ensure that you use the **final** version of the Mark Scheme. You are advised to destroy all draft versions.
- 2. Please mark all post-standardisation scripts in red ink. A tick (✓) should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks (½) should never be used.
- 3. The following annotations may be used when marking. <u>No comments should be written on</u> <u>scripts unless they relate directly to the mark scheme</u>. <u>Remember that scripts may be returned to</u> <u>Centres</u>.
 - x = incorrect response (errors may also be underlined)
 - ^ = omission mark
 - bod = benefit of the doubt (where professional judgement has been used)
 - ecf = error carried forward (in consequential marking)
 - con = contradiction (in cases where candidates contradict themselves in the same response)
 - sf = error in the number of significant figures
- 4. The marks awarded for each <u>part</u> question should be indicated in the margin provided on the right hand side of the page. The mark <u>total</u> for each question should be ringed at the end of the question, on the right hand side. These totals should be added up to give the final total on the front of the paper.
- 5. In cases where candidates are required to give a specific number of answers, (e.g. 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.
- 6. Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
- 7. Strike through all blank spaces and/or pages in order to give a clear indication that the whole of the script has been considered.
- 8. An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct <u>and</u> answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader/Principal Examiner for guidance.

Mark Scheme	Unit Code	Session	Year	Version
Page 3 of 7	2811	January	2005	FINAL

Abbreviations, annotations and conventions / = alternative and acceptable answers for the same marking separates marking points used in the Mark Scheme NOT = answers which are not worthy of credit () = words which are not essential to gain credit ecf = (underlining) key words which <u>must</u> be used to gain credit AW = alternative wording ora = or reverse argument									
Question Expected Answers							Marks		
1	(a)		isot	ope	protons	neutrons	electrons		
			12	² C	6	6	6	\checkmark	
			13	C	6	7	6	√	[2]
	(b)	(i)	mass spe	ctron	netry 🗸				[1]
		(ii)	mass of an isotope compared with carbon-12 \checkmark 1/12th of mass of carbon-12/on a scale where carbon-12 is 12 \checkmark mass of 1 mole of the isotope/mass of 1 mole of carbon-12 is equivalent to the first mark "mass of the isotope that contains the same number of atoms as are in 1 mole of carbon-12" \longrightarrow 1 mark (mark lost because of mass units)						[2]
	 (iii) 12 × 95/100 + 13 × 5/100 OR 12.05 ✓ = 12.1 (mark for significant figures) ✓ (12.1 scores both marks) 							[2]	
	(c)		1s ² 2s ² 2p ² ✓						[1]
	(d)		 CO₂: correct covalent bonds around carbon √ outer shell electrons correct √ (must be 'dot AND cross' or electron source clearly shown (different coloured for source?) 						[2]
	(e)	(i)	calcium h	ydro	kide/Ca(OF	1) ₂ ✓			[1]
			Ca(OH) ₂ (aq) + CO ₂ (g) \longrightarrow CaCO ₃ (s) + H ₂ O(l) $\checkmark \checkmark$ 1st mark for CaCO ₃ (s) State symbol essential here 2nd mark for rest of equation. Ignore state symbols						[2]
	(f)		$CaCO_3 \longrightarrow CaO + CO_2 \checkmark$ state symbols not required						[1]
	(g)	(i) (ii)	moles $CO_2 = 1000 / 44$ mol = 22.7 mol \checkmark volume CO_2 in 2000 = 22.7 x 24 = 545 dm ³ \checkmark reduction = 545 x 60/100 = 327 dm ³ \checkmark			[3]			
									Total: 17
					Mark So			22/01/	19995

Mark Scheme	Unit Code	Session	Year	Version
Page 4 of 7	2811	January	2005	FINAL

-	· · · · · ·	point			
5	,				
Mark	() = words which are not essential to gain credit				
	= (underlining) key words which must be used to gain credit				
	ecf = error carried forward				
	AW = alternative wording				
	ora = or reverse argument				
	5				
	Expected Answers	Marks			
		[2]			
	In Ca, oxidation state = 0 \checkmark and				
		[2]			
		[2]			
		6-3			
(i)		[1]			
(•)		L.1			
(ii)	$Ao^+ + C ^- \longrightarrow AoC \checkmark$	[1]			
(")		L'J			
<i>(</i> i)	moles HCl = 2.0 × 50/1000 = 0.10 √	[1]			
(1)	Moles 1cl = 2.0 × 30/ 1000 - 0.10 +	L'J			
/ii)	moles $C_a = \frac{1}{2} \times moles HCl = 0.050 $				
(11)		[2]			
		[4]			
	has not been identified)				
/;;;:\	Ca has reacted with water v				
(11)					
		101			
		[3]			
	2nd mark is for the rest of the balanced equation	Total: 14			
	ns, and Mark (i) (i) (i) (i) (ii) (ii)	and ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which <u>must</u> be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument Expected Answers Ca(s) +2 \checkmark HCl(aq)CaCl ₂ (aq) + .H ₂ (g). \checkmark (g) not required for H ₂ In Ca, oxidation state = 0 \checkmark and In CaCl ₂ , oxidation state = $2 \checkmark$ Oxidation number increases from Ca to CaCl ₂ correct dot and crosses \checkmark correct charges \checkmark (i) white precipitate/goes white \checkmark (ii) $Ag^{+} + Cl^{-} \longrightarrow AgCl \checkmark$ state symbols not required (i) moles $Acl = \frac{1}{2} \times$ moles $HCl = 0.050 \checkmark$ mass $Ca = 40.1 \times 0.050 = 2.00 g / 2.005 g \checkmark$ (accept 40 \times 0.050 = 2.0 g) (mass Ca of 4.0 g would score 1 mark as 'ecf' as molar ratio has not been identified)			

Mark Scheme	Unit Code	Session	Year	Version
Page 5 of 7	2811	January	2005	FINAL

Abbreviations, annotations and conventions used in the Mar Scheme	point	
Question	Expected Answers	Marks
3 (a) (i)	0 V	[1]
(ii	AI 🗸	[1]
(ii) P ✓	[1]
(iv		[1]
(v	N/P ✓	[1]
(v) Mg ✓	[1]
(v	i) Na ✓	[1]
(vii	i) Si 🗸	[1]
(b) (i)	Energy change when each atom in 1 mole ✓ of gaseous atoms ✓ loses an electron ✓ (to form 1 mole of gaseous 1+ ions).	[3]
(ii (ii	electrons experience greater attraction or <i>pull</i> / atomic radius decreases / electrons added to same shell /same or similar shielding ✓	[2]
,	In Be, electron being removed is at a lower energy \checkmark An s electron is lost in Be AND a p electron is lost in B \checkmark	[2]
(iv) IE (of Na): 100 - 500 kJ mol ⁻¹ ✓ electron is in a different shell /further from nucleus/new shell/ more shielding ✓ (<i>not sub-shell or orbital</i>) /	[2]
		Total: 17

Mark Scheme	Unit Code	Session	Year	Version
Page 6 of 7	2811	January	2005	FINAL

	causes an induced/resultant dipole on another molecule/atom 🗸	
	molecule/atom *	
	chlorine gas; bromine liquid; iodine solid/	
	volatility decreases from $Cl_2 \longrightarrow Br_2 \longrightarrow I_2/$	
	boiling point increases from $Cl_2 \longrightarrow Br_2 \longrightarrow I_2/$	
	stronger forces are broken from $Cl_2 \longrightarrow Br_2 \longrightarrow I_2 \checkmark$	
	number of electrons increases down group \checkmark	
	greater/more van der Waals' forces / induced dipole-	
	dipole interactions / forces between the molecules \checkmark	[6]
(b)	Reactivity decreases down group/ Cl_2 > Br_2 > I_2 /	
	Cl₂ displaces Br₂ AND Br₂ displaces I₂ ✓	
	chlorine: Cl₂ + bromide → yellow/ orange	
	bromine: Br₂ + iodide → darker orange/brown ✓ or purple in organic solvent	
	$Cl_2 + 2Br^- \rightarrow Br_2 + 2Cl^- \checkmark$	
	$Br_2 + 2I^- \rightarrow I_2 + 2Br^- \checkmark$	
	(or full equations)	
	Cl ₂ is stronger oxidising agent than Br ₂	[E mov]
	AND Br_2 is stronger oxidising agent than I_2 /	[5 max]
	Cl₂ has greater ability to 'attract in' or gain an electron	
	than Br ₂	
	AND Br ₂ has greater ability to 'attract in' or gain an	
	electron than $I_2 \checkmark$	
QoWC:	At least two sentences that show legible text with accurate spelling, punctuation and grammar so that the	
	meaning is clear.	[1]
	(Mark this from anywhere within Q4)	
		Total: 12

Mark Scheme	Unit Code	Session	Year	Version
Page 7 of 7	2811	January	2005	FINAL