

Subject: Chemistry Foundation Code: 2811

Session: June Year: 2002

Final Mark Scheme

02/6/2002

Chemistry Foundation

	1	
	1	 alternative and acceptable answers for the same marking point
	;	= separates marking points
Abbreviations,	NOT	 answers which are not worthy of credit
annotations and	()	= words which are not essential to gain credit
the Mark Scheme		 (underlining) key words which <u>must</u> be used to gain credit
	ecf	= error carried forward
	AW	= alternative wording
	ora	= or reverse argument

1. (a) (Atoms of) the same element / with same protons.... with different masses/different numbers of neutrons **(**[1]

(b)

isotono	percentage composition	number of		
isotope	percentage composition	protons	neutrons	
¹⁹¹ lr	38%	77	114	
¹⁹³ lr	62%	77	116	
	\checkmark	\checkmark	\checkmark	

Accept 37-39% for ¹⁹¹Ir; 61-63% for ¹⁹³Ir but **must** add up to 100.

(c) (i) average atomic mass/weighted mean/average mass \checkmark

compared with carbon-12 \checkmark

1/12th of mass of carbon-12/on a scale where carbon-12 is 12 \checkmark

mass of 1 mole of element/mass of 1 mole of carbon-12 is equivalent to first two marks "mass of the element that contains the same number of atoms as are in 1 mole of carbon-12" \longrightarrow 2 marks (mark lost because of mass units)

(ii) $38 \times 191/100 + 62 \times 193/100 \checkmark = 192.2 \checkmark$ Answers from other percentages above: $37 \times 191/100 + 63 \times 193/100 \checkmark = 192.3 \checkmark$ $39 \times 191/100 + 61 \times 193/100 \checkmark = 192.2 \checkmark$ [2] (i) Simplest (whole number) ratio of atoms/moles/elements \checkmark [1] (ii) ratio Ir : F = 62.75/192 : 37.25/19 or 0.327 : 1.96 \checkmark = 1 : 6 or formula = IrF₆ \checkmark

(iii) Ir + $3F_2 \longrightarrow IrF_6 \checkmark$ (consequential on response to (ii))

[1]

[3]

[3]

(d)

2. (a) trend in reactivity: more reactive down group \checkmark

explanation: electrons lost more easily / ionisation energies decrease

/ less attraction or pull 🗸

some attempt to relate this increase in size of atom / more shells / energy levels \checkmark

and increase in shielding \checkmark

[4]

[Total: 8]

3.

(i) $O^+(g) \longrightarrow O^{2+}(g) + e^-$ equation \checkmark ; (a) state symbols **but** an electron must be in the equation somewhere \checkmark [2] (ii) Large difference between 6th and 7th ionisation energies \checkmark marks a different shell (closer to nucleus) **V** [2] (i) $1s^22s^22p^63s^23p^1$ (b) [1] (ii) onisation energy 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Ionisation number sharp rise between ionisation 3 and ionisation 4 \checkmark sharp rise between ionisation 11 and ionisation 12 \checkmark i.e. the two steepest rises (for 2,8,3 pattern the wrong way around, award 1 mark) [2] $4AI(s) + 3O_2(g) \longrightarrow 2AI_2O_3(s)$ equation \checkmark ; state symbols \checkmark (c) (i) [2] (ii) Al^{3+} ions / highly charged aluminium ions \checkmark are small \checkmark ; O^{2-} ions / anions / negative ions are large \checkmark ; O^{2-} ions / anions / negative ions are polarised / distorted \checkmark $4 \longrightarrow [3 max]$ (d) $M(Al_2O_3) = 102 \text{ g mol}^{-1}$ amount of $AI_2O_3 = 25/102 = 0.2451 / 0.245 / 0.25$ [2] [Total: 14]

4. (a) HOCI:
$$+1 \checkmark$$
 HCI: $-1 \checkmark$ [2]
(b) covalent bonds shown correctly \checkmark
all molecule correct (i.e. chlorine's and oxygen's lone pairs) \checkmark [2]
(c) (i) electron pairs repel \checkmark
as far apart as possible \checkmark
the number of electron pairs (surrounding central atom) decides the shape \checkmark
lone pairs repel more (than bonded pairs) \checkmark
 $4 \longrightarrow [3 \text{ max}]$
(ii)
(ii)
(i) loss of electrons / ox number increases / gains oxygen / loses hydrogen \checkmark
(ii)
(iii) brown / orange / yellow colour \checkmark
(ii)
(iii) brown / orange / yellow colour \checkmark
(iii) cl₂ + 2l⁻ \longrightarrow 2Cl⁻ + l₂ \checkmark
(iii)
(ii) Molar mass of NaCl = 58.5 g mol⁻¹ \checkmark
mass of NaCl dissolved = 58.5 x 4 g = 234 g \checkmark
(ii) 2 mol NaCl \longrightarrow 1 mol Cl₂
 \therefore amount of Cl₂ produced = 2 mol \checkmark (*i.e. half 1st answer to (e)(i)*)
volume of Cl₂ produced = 24 x 2 = 48 dm³ \checkmark
(iii) 1 dm³ brine \longrightarrow 48 dm³ Cl₂(g)
2.5 x 10⁹/48 dm³ brine \longrightarrow 2.5 x 10⁹ dm³ Cl₂(g)
 \therefore 5.2 x 10⁷ (dm³) \checkmark (but wrong unit is wrong!)

3882 June 2002 07/06/2002 [1]

				[Total: 17]
5.	(a)	diagram of I	H bonding between water molecules (O of 1 molecule to H of anothe	er) 🗸
		dipoles show	wn \checkmark with lone pair involved in bond \checkmark	
		(could be in	words; could describe another molecule such as NH ₃ .)	
				[3]
		Two propert	ties from:	
		property	higher melting/boiling point than expected \checkmark	
		explanation	strength of H bonds/H-bonds need to be broken \checkmark	
			must imply that intermolecular bonds are broken	
		property	ice is lighter than water/ max density at 4°C \checkmark	
		explanation	H bonds hold H_2O molecules apart	
			/ open lattice in ice	
			/ H-bonds are longer 🗸	
		property	high surface tension/viscosity 🗸	
		explanation	strength of H bonds/H-bonds need to be broken \checkmark	
			4 m	$ax \longrightarrow [4]$
			Q – legible text with accurate spelling, punctuation and gra	ammar 🗸
				[1]

[Total: 8]