

Subject: Chemistry Foundation

Code: 2811

Session: June

Year: 2002

Final Mark Scheme

02/6/2002

MAXIMUM MARK

60

Chemistry Foundation

Abbreviations, annotations and conventions used in the Mark Scheme	1	= alternative and acceptable answers for the same marking point
	;	= separates marking points
	NOT	= answers which are not worthy of credit
	()	= words which are not essential to gain credit
		= (underlining) key words which <u>must</u> be used to gain credit
	ecf	= error carried forward
	AW	= alternative wording
	ora	= or reverse argument

(a) (Atoms of) the same element / with same protons.... with different masses/different numbers of neutrons

(b)

isotope	percentage composition	number of	
isotope	percentage composition	protons	neutrons
¹⁹¹ lr	38%	77	114
¹⁹³ lr	62%	77	116
	√	√	√

Accept 37-39% for 191 Ir; 61-63% for 193 Ir but must add up to 100.

[3]

[3]

(c) (i) average atomic mass/weighted mean/average mass ✓ compared with carbon-12 ✓

1/12th of mass of carbon-12/on a scale where carbon-12 is 12 🗸

mass of 1 mole of element/mass of 1 mole of carbon-12 is equivalent to first two marks "mass of the element that contains the same number of atoms as are in 1 mole of carbon-12" \longrightarrow 2 marks (mark lost because of mass units)

(ii) $38 \times 191/100 + 62 \times 193/100 \checkmark = 192.2 \checkmark$

Answers from other percentages above:

$$37 \times 191/100 + 63 \times 193/100$$
 = 192.3 \checkmark = 192.2 \checkmark

[2]

(d) (i) Simplest (whole number) ratio of atoms/moles/elements ✓

[1]

[2]

(ii) ratio Ir : F = 62.75/192 : 37.25/19 or 0.327 : 1.96 \checkmark = 1 : 6 or formula = IrF₆ \checkmark

(or using answer for Ir from (c)(ii))

(iii) Ir + $3F_2 \longrightarrow IrF_6 \checkmark$ (consequential on response to (ii))

[1]

[Total: 13]

2. (a) trend in reactivity: more reactive down group ✓ explanation: electrons lost more easily / ionisation energies decrease / less attraction or pull ✓

some attempt to relate this increase in size of atom / more shells / energy levels \checkmark and increase in shielding \checkmark

[4]

3. (a) (i) $O^+(g) \longrightarrow O^{2^+}(g) + e^-$ equation \checkmark ; state symbols **but** an electron must be in the equation somewhere \checkmark

[2]

(ii) Large difference between 6th and 7th ionisation energies ✓marks a different shell (closer to nucleus) ✓

[2]

(b) (i) $1s^22s^22p^63s^23p^1$

[1]

sharp rise between ionisation 3 and ionisation 4 🗸

sharp rise between ionisation 11 and ionisation 12 🗸

i.e. the two steepest rises

(for 2,8,3 pattern the wrong way around, award 1 mark)

[2]

(c) (i)
$$4AI(s) + 3O_2(g) \longrightarrow 2AI_2O_3(s)$$
 equation \checkmark ; state symbols \checkmark

[2]

(ii) Al³⁺ ions / highly charged aluminium ions ✓ are small ✓;
 O²⁻ ions / anions / negative ions are large ✓;
 O²⁻ ions / anions / negative ions are polarised / distorted ✓

 $4 \longrightarrow [3 \text{ max}]$

(d) $M(Al_2O_3) = 102 \text{ g mol}^{-1}$ amount of $Al_2O_3 = 25/102 = 0.2451 / 0.245 / 0.25$

[2]

[Total: 14]

4. (a) HOCl: +1 ✓ HCl: −1 ✓

[2]

(b) covalent bonds shown correctly ✓
all molecule correct (i.e. chlorine's and oxygen's lone pairs) ✓

- [2]
- (c) (i) electron pairs repel ✓
 as far apart as possible ✓
 the number of electron pairs (surrounding central atom) decides the shape ✓
 lone pairs repel more (than bonded pairs) ✓

 $4 \longrightarrow [3 \text{ max}]$

[2]

- (d) (i) loss of electrons / ox number increases / gains oxygen / loses hydrogen ✓
 - (ii) brown / orange / yellow colour ✓

[1]

[1]

(iii)
$$Cl_2 + 2l^- \longrightarrow 2Cl^- + l_2 \checkmark$$

[1]

(e) (i) Molar mass of NaCl = $58.5 \text{ g mol}^{-1} \checkmark$ mass of NaCl dissolved = $58.5 \text{ x 4 g} = 234 \text{ g} \checkmark$

[2]

(ii) 2 mol NaCl \longrightarrow 1 mol Cl₂

∴ amount of Cl_2 produced = 2 mol \checkmark (i.e. half 1st answer to (e)(i)) volume of Cl_2 produced = 24 x 2 = 48 dm³ \checkmark

[2]

(iii) 1 dm³ brine \longrightarrow 48 dm³ Cl₂(g) 2.5 x 10⁹/48 dm³ brine \longrightarrow 2.5 x 10⁹ dm³ Cl₂(g) \therefore 5.2 x 10⁷ (dm³) \checkmark (but wrong unit is wrong!)

[1]

[Total: 17]

5. (a) diagram of H bonding between water molecules (O of 1 molecule to H of another) ✓ dipoles shown ✓ with lone pair involved in bond ✓ (could be in words; could describe another molecule such as NH₃.)

[3]

Two properties from:

property higher melting/boiling point than expected ✓
explanation strength of H bonds/H-bonds need to be broken ✓

must imply that intermolecular bonds are broken

property ice is lighter than water/ max density at 4°C ✓
explanation H bonds hold H₂O molecules apart
/ open lattice in ice
/ H-bonds are longer ✓

property high surface tension/viscosity ✓explanation strength of H bonds/H-bonds need to be broken ✓

 $4 \text{ max} \longrightarrow [4]$

Q – legible text with accurate spelling, punctuation and grammar \checkmark

[1]

[Total: 8]