

Subject: Foundation Chemistry Code: 2811

Session: June Year: 2004

Final Mark Scheme

Mark Scheme	Unit Code	Session	Year	Version
Page 2 of 7	2811	June	2004	Final

ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

- 1. Please ensure that you use the **final** version of the Mark Scheme. You are advised to destroy all draft versions.
- 2. Please mark all post-standardisation scripts in red ink. A tick (✓) should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks (½) should never be used.
- 3. The following annotations may be used when marking. <u>No comments should be written on</u> <u>scripts unless they relate directly to the mark scheme</u>. <u>Remember that scripts may be returned to</u> <u>Centres</u>.
 - x = incorrect response (errors may also be underlined)
 - ^ = omission mark
 - bod = benefit of the doubt (where professional judgement has been used)
 - ecf = error carried forward (in consequential marking)
 - con = contradiction (in cases where candidates contradict themselves in the same response)
 - sf = error in the number of significant figures
- 4. The marks awarded for each <u>part</u> question should be indicated in the margin provided on the right hand side of the page. The mark <u>total</u> for each question should be ringed at the end of the question, on the right hand side. These totals should be added up to give the final total on the front of the paper.
- 5. In cases where candidates are required to give a specific number of answers, (e.g. 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.
- 6. Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
- 7. Strike through all blank spaces and/or pages in order to give a clear indication that the whole of the script has been considered.
- 8. An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct <u>and</u> answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader/Principal Examiner for guidance.

Mark Scheme	Unit Code	Session	Year	Version
Page 3 of 7	2811	June	2004	Final

Abbreviat	ions,	1	= alternative a	ind acceptabl	e answers	for the	same marking	point
annotatio	ns and	;	= separates m	arking points	5			
conventio	ons	NOT = answers which are not worthy of credit						
used in th	e Mark	() = words which are not essential to gain credit						
Scheme	•	()	= (underlining) kev words v	which mus	t be use	ed to gain credit	
		ecf	= error carried	forward			a to gain or can	
		AW	= alternative v	vordina				
		ora	= or reverse a	raument				
		0.0		gement				
Question	1	Expe	cted Answer	S				Marks
1				•				
(a)			isotope	protons	neutror	15 e	electrons	
()			nickel-58	28	30	2	28	
			nickel-60	28	32	2	28	
			nickel-62	28	34	2	28	
			MICKEI-02	∠0 ✓	\checkmark		/	[3]
		For a	of and column	como oc fi	ect colum	'n		[2]
		101.60		sume us fil	ST COUL			
(b) (i)		mass	enectrometry	\checkmark				
		mass	specific offering	nectromete	er chould	also b	e credited	[1]
		muss	spec / muss s	pechomere			e creurreu	[]
(ii)		avana	on mass/waich	ted mean m	nass of a	n aton		
(11)		averu	ge muss/weigi	red mean n				
			area with carb	011-12 V				
		1/121	n ot mass ot c	arbon-12/0	n a scale	wnere	carbon-12 is	
		12 •			, .	,		503
		mass of 1 mole of atoms (of an element) mass of 1 mole of					of I mole of	[3]
		carbon-12 is equivalent to first two marks						
		"mass of the element that contains the same number of						
		atoms as are in 1 mole of carbon-12" \longrightarrow 2 marks (mark						
		lost b	pecause of mas	rs units)				
							1	
(iii))	63.0 >	x 77.2/100 +	65.0 x 22.8	8/100 / 6	3.456	\checkmark	[2]
		= 63.5	ō (mark for sig	nificant fig	jures) √			
			,					
(iv))	coppe	r/Cu ✓					[1]
				,				
(C) (i)		mass	of Ni = 2.0.g 🗸					
		moles	of Ni = 2.0/5	8.7 mol = 0.	0341/0.0)34 mol	✓	
		(1 mar	k would typicall	y result fron	n no use o	f 25% -	→ 0.136 mol)	[2]
		2nd m	hark is for the	mass of Ni	divided	by 58.7	7	
						•		
(ii)		numbe	er of atoms of	Ni = 6.02 >	< 10 ²³ × 0	.0341		
		= 2.05	5 x 10 ²² / 2.1 x	10 ²² atoms	\checkmark			[1]
		Can b	e rounded dow	n to 2.1 or	2.0 or 2 ((if 2.0)		
		From	8 q, ans = 8.18	/8.2 x 10 ²²		,		
		(and c	other conseque	ential respo	nses)			
			•	•				Total: 13

Mark Scheme	Unit Code	Session	Year	Version
Page 4 of 7	2811	June	2004	Final

Abbreviation annotation conventior used in the Scheme	ons, s and is e Mark	 / = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which <u>must</u> be used to gain credit ecf = error carried forward AW = alternative wording or reverse argument 		
_				
Question		Expected Answers	Marks	
2 (a)	(i)	 ⊕ - ⊕ - ⊕ positive ions/cations ✓ and negative electrons ✓ Can be described in words only for both marks 	[2]	
	(ii)	contain free/mobile/delocalised electrons \checkmark	[1]	
(b)	(i)	shared pair of √ electrons √ <i>i.e. 'shared electrons' is worth 1 mark. pair of electrons</i> <i>for second marks</i>	[2]	
	(ii)	correct dot-and cross diagram ✓	[1]	
(c)	(i)	electrostatic attraction ✓ between oppositely charged ions ✓ (charged or electrostatic for 1st mark)	[2]	
	(ii)	correct dot-and cross diagram ✓ correct charges ✓	[2]	
	(iii)	$\begin{array}{cccc} Mg & \longrightarrow & Mg^{2*} + 2e^{-} \checkmark \\ F_2 & + & 2e^{-} & \longrightarrow & 2F^{-} \checkmark \\ - sign not required with electron \end{array}$	[2]	
	(iv)	solid: ions cannot move /in fixed positions in lattice \checkmark solution: ions are free to move \checkmark	[2]	
			Total: 14	

Mark Scheme	Unit Code	Session	Year	Version
Page 5 of 7	2811	June	2004	Final

Abbreviations, annotations and conventions used in the Mark Scheme	 / = alternative and acceptable answers for the same marking p ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit <u>ecf</u> = (underlining) key words which <u>must</u> be used to gain credit ecf = error carried forward AW = alternative wording 	point
	ora = or reverse argument	
Question	Expected Answers	Marks
3 (a)	NaClO, oxidation state = +1 ♥ NaCl, oxidation state = −1 ♥ OR Oxidation number decreases from NaClO → NaCl ♥ by 2 ♥	[2]
(b) (i)	$84/24000 = 3.5 \times 10^{-3} \text{ mol } \checkmark$	[1]
(ii)	$3.5 \times 10^{-3} \text{ mol } \checkmark$ ans to (i)	[1]
(iii)	$3.5 \times 10^{-3} \times 1000/5 = 0.70 \text{ mol dm}^{-3} \checkmark$ ans to (ii) x 1000/5	[1]
(C)	molar mass of NaClO = 23 + 16 + 35.5 = 74.5 (g mol ⁻¹) \checkmark concentration = 0.70 x 74.5 = 52.15 g (dm ⁻³) \checkmark ans to (iii) x 74.5 bleach is 5.215 g per 100 cm ³ and the information is correct (as this value exceeds 4.5%) \checkmark response depends upon answer to (b)(iii). Could be opposite argument if ans < 4.5% OR molar mass of NaClO = 23 + 16 + 35.5 = 74.5 (g mol ⁻¹) \checkmark moles of NaOCl = 4.5/74.5 = 0.0604 mol (in 100 cm ³) \checkmark bleach is 10 x 0.0604 = 0.604 mol dm ⁻³ which is less than answer to (b)(iii) and therefore label is correct. \checkmark response depends upon answer to (b)(iii). Could be opposite argument if ans 0.604	[3]
(d)	2HCl + NaClO \longrightarrow Cl ₂ + NaCl + H ₂ O $\checkmark \checkmark$ Award one mark for: HCl + NaClO \longrightarrow Cl ₂ + NaOH	[2]
		Total: 10

Mark Scheme	Unit Code	Session	Year	Version
Page 6 of 7	2811	June	2004	Final

Abbre annota conve used i Schen	Doint			
4	(a)	(i)	Answer is inclusive of 9 - 14 inclusive V	[1]
	()	(ii)	Ca(s): $1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}4s^{2}\checkmark$ Ca(OH) ₂ (aq): $1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}\checkmark$	[2]
	(b)	(i)	Identity of precipitate A: calcium carbonate / $CaCO_3 \checkmark$ Equation: $Ca(OH)_2 + CO_2 \longrightarrow CaCO_3 + H_2O \checkmark$ equation alone would score 2 marks unless contradicted by identity	[2]
		(11) (111)	Formula of solution B: $Ca(HCO_3)_2 \checkmark$ Equation: $CaCO_3 + H_2O + CO_2 \longrightarrow Ca(HCO_3)_2 \checkmark$ equation alone would score 2 marks unless contradicted by identity $CaCl_2 \checkmark$	[2]
	(-)			
	(C)		barium atoms are larger v barium atoms have more shielding v this outweighs the increase in nuclear charge v barium electrons are lost more easily /less energy required /ionisation energy decreases v	[4]
				Total: 12

Mark Scheme	Unit Code	Session	Year	Version
Page 7 of 7	2811	June	2004	Final

Abbreviations,	/ = alternative and acceptable answers for the same marking po	pint			
annotations and	; = separates marking points				
conventions	NOT = answers which are not worthy of credit				
used in the Mark	() = words which are not essential to gain credit				
Scheme	= (underlining) key words which must be used to gain credit				
	ecf = error carried forward				
	AW = alternative wording				
	ora = or reverse argument				
Question	Expected Answers	Marks			
5 (a)		indino			
o (u)	H bonding from 0 of 1 malecule to H of another √				
	dipoles shown or described v	[3]			
	with long pair of Ω involved in the bond \mathbf{v}	[0]			
	with tone pair of O involved in the bond +				
	CH.				
	ven den Weele' fonces from escillating dipoles (tempenary				
	dipolog/ transient dipolog/ instantaneous dipolog/ remporary				
	alpoles/ mansient alpoles/ instantaneous alpoles +				
	loading to induced dinalog v				
	reading to induced apples *	[2]			
	caused by uneven distribution of electrons *	ູເວງ			
(b)		Sub-lotal: 0			
(a)	I wo properties from:				
	Let is less dense/lighter than water/floats on water/ max				
	density at 4°C V				
	<i>explanation:</i> H bonds hold H ₂ O molecules apart				
	/ open lattice in ice				
	/H-bonds are longer ✓	[2]			
	Higher melting/boiling point than expected 🗸				
	Not just high				
	Accept: 'unusually high/strangely high/relatively				
	high'	[2]			
	<i>explanation</i> : H bonds need to be broken \checkmark				
	must imply that intermolecular bonds are broken				
	High surface tension ✓				
	<i>explanation</i> strength of H bonds across surface \checkmark	[2]			
		mark 2			
		properties only			
		\longrightarrow 4 max			
	QoWC over whole question	[1]			
	- legible text with accurate spelling				
	punctuation and arammar \checkmark				
<u> </u>		Total: 11			