

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary GCE

CHEMISTRY 2813/01

How Far, How Fast?

Friday

11 JANUARY 2002

Afternoon

1 hour

Candidates answer on the question paper.
Additional materials:
Data Sheet for Chemistry
Scientific Calculator

Candidate Name	Centre Number	Candidate Number	

TIME 1 hour

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE					
Qu. Max. Mark					
1	10				
2	8				
3	12				
4	13				
5	8				
6	9				
TOTAL	60				

This question paper consists of 12 printed pages.

Answer all the questions.

1	(a)	The	formation of compounds is accompanied by enthalpy changes.
		(i)	Explain the term standard enthalpy change of formation.
			[2]
		(ii)	State the conditions under which standard enthalpy changes are measured.
			[2]
	(b)	Oxi	dation reactions are normally exothermic.
		(i)	What do you understand by the term exothermic?
			[1]
		(ii)	State one example of an exothermic oxidation reaction that is important in industry or everyday life.
			[1]

(c) The oxidation of hydrazine, N_2H_4 , by dinitrogen tetroxide, N_2O_4 , has been used in rocket propulsion.

$$2\mathsf{N}_2\mathsf{H}_4(\mathsf{I}) \ + \ \mathsf{N}_2\mathsf{O}_4(\mathsf{I}) \longrightarrow \ 3\mathsf{N}_2(\mathsf{g}) + 4\mathsf{H}_2\mathsf{O}(\mathsf{g})$$

(i) Use the following standard enthalpy changes of formation to calculate the enthalpy change for this reaction.

compound	ΔḤ [↔] f/kJ mol ⁻¹
N ₂ H ₄ (<i>l</i>)	+51
N ₂ O ₄ (<i>l</i>)	+9
H ₂ O(g)	-242

	AnswerkJ moi ⁻¹ [3]
(ii)	Suggest what feature, other than the value of ΔH , makes this reaction suitable for propelling a rocket.	or
	[1]
	[Total : 1	വ

2 Photosynthesis is an endothermic reaction.

Why is this?

(a) Under what temperature conditions do most endothermic reactions occur?

......[1]

(b) Plants photosynthesise well both in the Tropics and under Arctic conditions.

......[1]

(c) One of the products of photosynthesis is glyceraldehyde, C₃H₆O₃. Equation 2.1 shows the formation of glyceraldehyde.

$$3H-O-H + 3O=C=O \longrightarrow H-C-C-C-C + 3O=O$$

glyceraldehyde

Equation 2.1

Table 2.1 lists relevant average bond enthalpies.

Table 2.1

bond	bond enthalpy/kJ mol ⁻¹
0=0	+498
0—Н	+464
C=0	+750
C-O	+358
C—H	+413
C—C	+347

Use these bond enthalpies to calculate the following quantities:

(i) the total enthalpy of all the bonds on the left hand side of Equation 2.1,

[2]

(ii) the total enthalpy of all the bonds on the right hand side of Equation 2.1,

[2]

(iii) hence, the enthalpy change for the reaction in Equation 2.1. Include the sign of ΔH in your answer.

 $\Delta H = \dots$ kJ mol⁻¹ [1]

(d) Complete the following enthalpy profile diagram to show your calculated ΔH for the reaction in Equation 2.1.

[1]

[Total: 8]

3 (a) (i) On the following axes, sketch the Boltzmann distribution of molecular energies for a fixed amount of gas at a temperature labelled as T_1 .

 $\boldsymbol{\mathit{E}}_{\mathrm{act}}$ represents the activation energy of the reaction.

(ii) On the same axes, sketch another distribution for the *same* amount of gas, at a higher temperature, labelled as T_2 .

[2]

[2]

(b)	What do you understand by the term <i>activation energy</i> , E_{act} ?
	[1]
(c)	Using your answers to (a) and (b) , explain why the rate of a chemical reaction is affected by changes in temperature.
	[र]

(d) Table 3.1 lists some average bond enthalpies.

Table 3.1

bond	bond enthalpy /kJ mol ⁻¹
C-H	+413
C-Cl	+327
Cl—Cl	+243
Br—Br	+193

(i)	Use the values in Table 3.1 to suggest the order of increasing $E_{\rm act}$ values for the
	following four reactions. Write the letters A, B, C and D in the appropriate boxes.

$$\mathsf{A}\quad \mathsf{CH_4} \,\longrightarrow\, \mathsf{CH_3} + \mathsf{H}$$

$$\mathsf{B} \quad \mathsf{CH}_3 + \mathsf{C}l \longrightarrow \mathsf{CH}_3 \mathsf{C}l$$

$$\mathsf{C}\quad\mathsf{Br}_2\longrightarrow 2\mathsf{Br}$$

$$D \quad Cl_2 \longrightarrow 2Cl$$

smallest $E_{\rm act}$ largest $E_{\rm act}$

(ii)	Explain	vour	choice	of	order	in	(i).
(''')	LAPIGIT	your	OHOICC	O.	oraci		('') .

[Total : 12]

[2]

4	The equation below shows the first stage in the industrial manufacture of nitric acid from ammonia.					
	4NF	$H_3(g) + 5O_2(g) \rightleftharpoons 4NO(g) + 6H_2O(g)$	$\Delta H = -907 \text{ kJ mol}^{-1}$	Reaction 4.1		
	This reaction is catalysed by a platinum-rhodium gauze at 800 °C.					
	(a)	State and explain what effect a catalyst has	on a reaction.			
				[3]		
	(b)	What type of catalyst is the platinum-rhodiu	m gauze?			
				[1]		
	(c)	This reaction is an example of a <i>dynamic e</i>	quilibrium.			
	State two features of a dynamic equilibrium.					

(d)	(i)	State le Chatelier's principle.
		[2]
	(ii)	Use le Chatelier's principle to describe and explain how the equilibrium position of Reaction 4.1 is affected by increasing the pressure and by increasing the temperature.
		increasing the pressure
		increasing the temperature
		[4]
(e)	Suç	ggest a reason why the reaction is carried out at 800 °C.
	••••	
		[1]
		[Total : 13]

			.•
5	This	s que	stion is about the reactions of acids.
	(a)	Sulp	phuric acid reacts with ammonia to give ammonium sulphate.
			$2NH_3 + H_2SO_4 \longrightarrow (NH_4)_2SO_4$
		(i)	What property of ammonia is shown in this reaction?
			[1]
		(ii)	Calculate the maximum mass of ammonium sulphate that can be obtained from 100 g of ammonia.
			[A _r : H, 1.0; N, 14.0; O, 16.0; S, 32.1]
			mass = g [3]
		(iii)	State a large scale use of ammonium sulphate.
			[1]
	(b)		e what you would observe on adding nitric acid to magnesium carbonate. e a balanced equation for the reaction.
		Obs	ervation(s)
		Equ	ation

[Total : 8]

[3]

In this question, 1 mark is available for the quality of written communication.

	amage is caused.
	[Total : 9
••	
••	
٠.	
٠.	
••	
••	
••	
•••	
• •	
•••	