

Subject: How Far, How Fast? Code: 2813/01

Session: January Year: 2002

Final Mark Scheme

MAXIMUM MARK

60

Abbreviations,	1	alternative and acceptable answers for the same marking point
annotations and	,	separates marking points
conventions used	NOT	answers which are not worthy of credit
in the Mark	()	words which are not essential to gain credit
Scheme		(underlining) key words which must be used to gain credit
	ecf	error carried forward
	AW	alternative wording
	ora	or reverse argument

- 1 (a) (i) the enthalpy change when **1 mole** of compound/substance is formed from its **elements** under **standard conditions** (of temperature and pressure)
 - (ii) temperature of 298K (or 25 °C)

 ✓

 pressure of 1 atmos (or 100 kPa or 101 kPa)
 ✓
- (b) (i) a reaction that gives out heat/energy to its surrounds or in which the reactants react with a decrease in internal enthalpy/energy. [NOT temperature rise] ✓
 - (ii) e.g. combustion/burning of fuels (or stated fuel, e.g. alkanes) or respiration or metabolism or (unbalanced) equation representing this. [NOT just 'burning' on its own] ✓
 - (c) (i) $\Delta H = 4(-242) 2(+51) 9$ (\checkmark for x2 and x4) = -968 - 102 - 9 (\checkmark for the correct signs) $= -1079 \text{ kJ mol}^{-1}$ (\checkmark for the answer) ecf (see separate list of alternatives)
 - (ii) Because the products are **gases** (if products are identified, both must be correct)
 [NOT low activation energy] ✓

[1] Total: [10]

[2]

[2]

[1]

[1]

2 (a) at a high temperature (accept any stated temperature above 0° C)

[1]

(b) photosynthesis requires (only) **light.** *or* 'energy from the sun' [NOT heat, or heat from the sun]

[1]

(c) (1) 6(O-H) + 6(C=O)

✓

 $= 6 \times 464 + 6 \times 750$ $= 7284 \text{ (kJ mol}^{-1}\text{)}$

ecf

[2]

(ii) 3(O=O) + 4(C-H) + 2(C-C) + 2(C-O) + 2(O-H) + C=O

 $= 3 \times 498 + 4 \times 413 + 2 \times 347 + 2 \times 358 + 2 \times 464 + 750$

= 6234 (kJ mol⁻¹)

1

ecf

(see separate list of alternatives allow [1] if only C-C is omitted)

[2]

(iii) $\Delta H = 7284 - 6234$ = + 1050 kJ mol⁻¹

ecf (i.e. (i)-(ii))

[1] ecf

(d) diagram

[to include: $C_3H_6O_3 + 3O_2$ as product

and ΔH or '+1050', drawn to be consistent with answer to part (iii) above]

[1]

Total: [8]

3	(a)	(i)	distribution curve (T_1) : starts at $(0,0)$ and goes to a maximum	✓	
			right hand side tails off to x-axis exponentially	✓	
			[it can reach the axis, but not cross it]		[2]
		(ii)	second curve (T_2) : starts at $(0,0)$ and has its maximum at a lower ordinate value	√	
			and to the right of the T_1 maximum	✓	
					[2]
or en	(b) ergy nee	or end or mi	ninimum) energy that molecules/particles need to have in order to react ergy required for effective collisions nimum energy needed for a reaction to occur break bonds [NOT the energy needed to start a reaction]		
					[1]
	(c)		ther temperature molecules have $E > E_a$ [NOT just 'more molecules have higher energy'] 🗸	
		∴ gre	eater chance of reacting on collision (or more successful collisions)	✓	
		∴ fas	just 'more collisions'] ter reaction <i>or</i> increased rate except the converse arguments at a lower temperature)	√u/c	[3]
	(d)	(i)	$egin{array}{ c c c c c c c c c c c c c c c c c c c$		
			(either C <d<b<a [1])<="" c<d<a<b,="" i.e.one="" in="" or="" place:="" td="" wrong=""><td>(all correct</td><td>:: [2] [2]</td></d<b<a>	(all correct	:: [2] [2]
		(ii)	no bonds broken in $B \Rightarrow low E_{act}$	✓	
			the others go in order of bond energies	✓	[2]
		(or wtte – e.g. A has the greatest bond energy)		Total:	[12]

4	(a)	it of	ealyst speeds up a reaction (without being used up). fers a different route	✓ ✓			
		of lo	ower activation energy	√	[3]		
	(b)	hetei	rogeneous	✓	[1]		
	(c)	need	s to happen in a closed system		L - J		
		no cl forw	nange in macroscopic properties ard and backward reactions continue to proceed at the same rate as each other [NOT same extent]				
		out a	-	wo√√	[2]		
	(d)	(i)	(When a system in dynamic equilibrium is subjected to a change in conditions. the (position of) equilibrium [NOT reaction] will shift (or be restored) ✓ in the direction that minimises the effect of the change				
			or opposes the change [NOT negates or cancels the change]	✓	[2]		
		(ii)	pressure				
			equilibrium shifts to the left because 9 moles of gas on LHS and 10 moles of gas on RHS or less particles on left hand side of equation	✓u/c			
			temperature equilibrium shifts to the left hand side	√			
			because reaction is exothermic or ΔH is negative	√u/c	[4]		
	(e)		To speed up reaction. or To obtain a reasonable yield at reasonable rate.	✓			
					[1]		
				Total:	[13]		

3	(a)	(1)	[NOT ammonia reacts with/	_	*	✓	[1]
		(ii)	M_r for $(NH_4)_2SO_4 = 132.1$ 2 x 17)/34	(mark for 2 x 17)	✓ ✓	
			= 388-390 g			√ecf	[3]
		(iii)	fertiliser			✓	[1]
	(b)		CO ₂ is evolved/given off <i>or</i> reamark is NEGATED if a change		entioned]	✓	
			$MgCO_3 + 2HNO_3 \longrightarrow$	Mg(NO ₃) ₂ +	$H_2O + CO_2$		
					correct formulae of reagents equation balanced	✓ ✓	
						Total	[3] : [8]
6		CFCs affect the ozone layer C-Cl bond breaks with UV or energy from sunlight giving Cl radicals or Cl• or Cl atoms (the Cl can be read into an equation, but					
			cal'/'atom' has to be in words) geneous sis	1		✓ ✓ ✓	
		word	explanation of how Cl acts as	a homogeneou	s catalysis (e.g. it is regenerate	ed) ✓	
		hence	on of chain reaction one Cl breaks down many O_3 $O_3 \longrightarrow ClO + O_2$			✓ ✓ ✓	
		ClO -	$\begin{array}{ccc} + & O & \longrightarrow & Cl & + & O_2 \\ + & O_3 & \longrightarrow & O_2 & + & O] \end{array}$	or ClO -	$+ O_3 \longrightarrow C1 + 2 O_2$	✓	
		. 0			10 points: any	y 8 score	
				Q of w C (at]	east one sensible sentence):	✓ Total	[9] · [9]
						i Olal	· [2]