Question	Expected Answers	Marks
1 (a)(i)	the enthalpy change when 1 mole (in words) of compound/substance [N.B. NOT element in its standard state, and NOT 1 mol of elements, if a	
	compound is being made] (is formed from its) elements under standard conditions or at 100 kPa and a stated temperature or at room temperature and pressure	[2]
(ii)	$H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(l)$ balanced for l mole of water \checkmark	
		101
(b)	state symbols (u/c -anything on left, but has to be $H_2O(l)$ on RHS) \checkmark	[2]
	x - 75 - 2(286) = -394 $[x = 75 + 572 - 394]$ $(x 2)$ (correct +/- signs)	
	$x = (+)253 \text{ (kJ mol}^{-1})$	
*	correct ans \Rightarrow [3] marks. Award [2] for any of the following: -33, +103, -253, -891, +1041	
(c) (i)	Award [1] for any of the following: +33, -183, -605, +755, -1041	[3]
(0) (1)		
	enthalpy	
	$N_2(g) + 3H_2(g)$	
	progress of reaction	
	look for. ΔH shown as exothermic o r- 92 kJ mol ⁻¹	
	E_{act} or 68 kJ mol ⁻¹ from reactants to trans. state \checkmark product labelled correctly after transition state \checkmark	
(ii)		[3]
	$92 + 68 = 160 \text{ (kJ mol}^{-1})$ (no ecf)	
		[1] total
		11

Question	Expected Answers	Marks
2 (a)	$C_6H_6(l) + 7\frac{1}{2}O_2(g) \rightarrow 6CO_2(g) + 3H_2O(l)$ (or 15/2) Correct formulae and state symbols \checkmark balanced for 1 mole of C_6H_6 \checkmark	[2]
(b)		
	$x - 3267 = 3(-1301)$ (x 3) \checkmark (correct +/- signs) \checkmark	
	$x = -636 \text{ (kJ mol}^{-1)}$	
*	correct ans \Rightarrow [3] marks. Award [2] for any of the following: +636, +1966, ±7170, +665 Award [1] for any of the following: -1966, ±4568, -665 If no other mark has been awarded, you could award [1] for 3 x (-)1301	[3]
(c) (i)		
	(rate) increases more molecules have E > E _a or enough energy to react (at higher T) collision rate increases (with T) or there are more (effective) collisions N B. there is no mark for "molecules go faster/have more energy"	[3]
(ii)	(rate) increases (because they are closer together) molecules collide more often or more collisions or more molecules in contact with the catalyst N.B. no mark for molecules go faster/have more energy	[2]
(d) *		
	it's a catalyst or it speeds up the reaction by lowering E _{act} or providing alternative route with lower energy or adsorbs/forms (temporary) bonds with the reagents N.B. no mark for "provides surface" or "extra surface area"	[2] total 12

Question	Expected Answers	Marks
3 (a)	• forward rate = reverse rate (not concentration of reactants and products are equal)	
	• can be approached from either direction <i>or</i> reversible reaction <i>or</i> (constant) change from reactants to products and vice versa	
	• no change in overall macroscopic properties (or one specified property, e.g. colour/concentration) or appears to have stopped	
	• takes place in a closed system . (any two bullet points) 🗸 🗸	[2]
(b)	a change in conditions <i>or</i> a disturbance will cause a shift in the (position of) equilibrium	
* (c)	in the direction that minimises/opposes/reduces/attempts to balance out/ the effect of the change N.B. do not accept "cancels" or "equals" or "balances" or "restores" without the "attempt"	[2]
	solution would turn <u>yellow</u> (allow yellow-green) (do not allow this mark if candidate says it goes yellow and then back to green again!)	
(d)	(increasing/added [H ⁺] pushes) the <u>equilibrium</u> to left hand side or <u>equilibrium</u> shifts to form more HIn ecf ✓ ecf: if candidate states that the colour goes blue, then the first mark is lost, but the second can be awarded for stating that the eqm. goes to the right	[2]
*	(colour goes from yellow to) green u/c ✓ then to blue (allow blue-green) ✓ (do not allow this mark if candidate says it goes blue and then back to green	
*	again!) N B. allow e.c.f for both these marks as follows: if candidate has said in (c) that colour goes blue, then these two marks are for (blue to) gree n[1], and yellow(-green) [1] (don't allow "blue" in both!)	
	OH ⁻ reacts with/removes H ⁺ (or equation) or is a proton acceptor or neutralises the acid N.B. not just "OH- is a base" shifting the equilibrium to the right hand side or equilibrium shifts to form more In ecf	[4] total 10
	(the word "equilibrium" need only appear once in parts (c) and (d) If it is omitted from both (c) and (d), deduct [1] only. If it is omitted from only one part, allow full marks (as long as the chemistry is correct!))	

Question	Expected Answers	Marks
4 (a)	a strong acid is completely ionised/dissociated (to H ⁺ (aq)) or gives 1 mol of H ⁺ (aq) for each 1 mol of HA a weak acid is incompletely ionised/dissociated (NOT unionised) or gives less than 1 mol of H ⁺ (aq) for each 1 mol of HA ✓	[2]
	N B. if neither of the above two marks can be awarded, you can award [1] for the statement that "strong acids donate protons/H+ more readily than weak acids	[1]
(b) (i)	$CaCO_3 + 2HA \longrightarrow CaA_2 + H_2O + CO_2$ or $CaCO_3 + 2H^+ \longrightarrow Ca^{2+} + H_2O + CO_2$ or $CO_3^{2-} + 2H^+ \longrightarrow H_2O + CO_2$	
(ii)	 (average) energy/speed/movement of molecules/particles increases with temperature more (molecules) have E > E_a (at higher T) or have enough energy to react N.B. do not allow this point if candidate has stated that the E_a decreases with temperature activation energy is the minimum energy molecules need in order to react collision rate or number of collisions increases (with T)	[3] total 6
	$N.B.$ the first two bullet points could be read into two labelled Boltzmann distribution curves, showing E_a	

Question	Expected Answers	Marks
5 (a) (i)	the energy/enthalpy/heat required to break 1 mole of bonds or a bond per molecule in 1 mole N.B. do not allow "(energy needed to break the bonds in) 1 mole of compound"	[2]
(ii)	$^{1}/_{4}CH_{4}(g) \longrightarrow ^{1}/_{4}C + H$ (i.e balanced for 1 mol of H) $\checkmark \checkmark \checkmark$ If the above three marks cannot be awarded (this is more than likely!), allow the	
	following: Any equation with CH₄(g) on the left hand side	
	Any equation showing the breaking of a CH bond, e.g. C + 4H or CH ₃ + H on the right hand side	[3]
(b)	total BE on left = $2(C-C) + 8(C-H) + 5(O=O) = +6488 \text{ kJ}$ total BE on right = $6(C=O) + 8(O-H) = +8542 \text{ kJ}$ N.B. if neither of these two marks can be awarded, you could award [1] if all of	
	the correct multipliers (2, 8, 5, 6, 8) have been used. $\Delta H = 6488-8542 = -2054 \text{ (kJ mol}^{-1}\text{)} \qquad \checkmark \text{ ecf}$ ([3] for correct ans) (ecf: award the mark for correctly taking their total BE on right from their total	[3]
(c) (i)	BE on left. Not vice versa. If you cannot clearly see which is BE on right and which is BE on left, don't award this mark)	
	either: average bond energies are not applicable to particular bonds or. ΔH _c is for H ₂ O(I), whereas bond energies are for gases N.B. ingore any ref. to changes in conditions/temperature etc.	[1]
(ii)	-4200	
	$\Delta H_c/kJ$ mol ⁻¹	
	2200	
*	3 4 5 6	[1]
(iii)	number of carbon atoms plotting of points and a straight line ✓	[1]
(iv)	-3450 to -3550 (kJ mol ⁻¹) (ignore absence of sign, but do not allow +) ✓ (allow e.c.f correct interpretation of incorrect graph)	[1]
	Successive members/molecules/compounds/formulae increase by a regular/fixed/the same amount (of C and/or H) <i>or</i> by a CH ₂ group \checkmark	12 max 11

Question	Expected Answers	Marks
6 (a)	 mention of two of the following as pollutants, or as products of combustion or as being present in exhaust gases: carbon monoxide, nitrogen monoxide, nitrogen dioxide, unburned hydrocarbons (ignore any ref to sulphur compounds) heterogeneous (catalysis) (not heterolytic!) needs a high temperature (reactants) adsorbed onto the catalyst's surface weakly/temporarily bonded to the catalyst bonds in reactants are weakened (products easily) desorbed after reaction or lost/released from surface description of how one of the pollutants undergoes transformation into harmless products, e.g. CO + NO — CO₂ + ½N₂ (or 2CO + O₂ — 2CO₂ or 2NO — N₂ + O₂ or h/c + O₂ — CO₂ + H₂O) (or in words - equation does not need to be balanced) any five bullet points ✓ ✓ ✓ ✓ Q of WC: Look for two things here; the overall account must read clearly, and make sense grammatically (ignore spellings), and in addition at least one of the following words should be used correctly in a suitable context: heterogeneous, catalyst, adsorption, desorption., oxidation, reduction 	[6]
(b)	Indicate this mark as Q √	
	• Haber process converts nitrogen/N ₂ (from the air hence cheap and plentiful) into ammonia/NH ₃ or in an (unbalance) equation	
	ammonia is usedas a refrigerant	
	 and to make fertilizers such as ammonia itself, ammonium sulphate or other ammonium salt or urea etc. which are needed for more crops/food),. 	
	 and nitric acid, which is used to make explosives or a named N-containing explosive, polyamides/nylon, dyes etc. any 4 bullet points	[4] total 10