| Question | Expected Answers | Marks | |----------|--|--------------| | 1 (a)(i) | the enthalpy change when 1 mole (in words) of compound/substance [N.B. NOT element in its standard state, and NOT 1 mol of elements, if a | | | | compound is being made] (is formed from its) elements under standard conditions or at 100 kPa and a stated temperature or at room temperature and pressure | [2] | | (ii) | $H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(l)$ balanced for l mole of water \checkmark | | | | | 101 | | (b) | state symbols (u/c -anything on left, but has to be $H_2O(l)$ on RHS) \checkmark | [2] | | | x - 75 - 2(286) = -394 $[x = 75 + 572 - 394]$ $(x 2)$ (correct +/- signs) | | | | $x = (+)253 \text{ (kJ mol}^{-1})$ | | | * | correct ans \Rightarrow [3] marks.
Award [2] for any of the following: -33, +103, -253, -891, +1041 | | | (c) (i) | Award [1] for any of the following: +33, -183, -605, +755, -1041 | [3] | | (0) (1) | | | | | enthalpy | | | | $N_2(g) + 3H_2(g)$ | | | | | | | | progress of reaction | | | | look for. ΔH shown as exothermic o r- 92 kJ mol ⁻¹ | | | | E_{act} or 68 kJ mol ⁻¹ from reactants to trans. state \checkmark product labelled correctly after transition state \checkmark | | | (ii) | | [3] | | | $92 + 68 = 160 \text{ (kJ mol}^{-1})$ (no ecf) | | | | | [1]
total | | | | 11 | | Question | Expected Answers | Marks | |----------|---|--------------------| | 2 (a) | $C_6H_6(l) + 7\frac{1}{2}O_2(g) \rightarrow 6CO_2(g) + 3H_2O(l)$ (or 15/2) Correct formulae and state symbols \checkmark balanced for 1 mole of C_6H_6 \checkmark | [2] | | (b) | | | | | $x - 3267 = 3(-1301)$ (x 3) \checkmark (correct +/- signs) \checkmark | | | | $x = -636 \text{ (kJ mol}^{-1)}$ | | | * | correct ans \Rightarrow [3] marks.
Award [2] for any of the following: +636, +1966, ±7170, +665
Award [1] for any of the following: -1966, ±4568, -665
If no other mark has been awarded, you could award [1] for 3 x (-)1301 | [3] | | (c) (i) | | | | | (rate) increases more molecules have E > E _a or enough energy to react (at higher T) collision rate increases (with T) or there are more (effective) collisions N B. there is no mark for "molecules go faster/have more energy" | [3] | | | | | | (ii) | (rate) increases (because they are closer together) molecules collide more often or more collisions or more molecules in contact with the catalyst N.B. no mark for molecules go faster/have more energy | [2] | | (d)
* | | | | | it's a catalyst or it speeds up the reaction by lowering E _{act} or providing alternative route with lower energy or adsorbs/forms (temporary) bonds with the reagents N.B. no mark for "provides surface" or "extra surface area" | [2]
total
12 | | Question | Expected Answers | Marks | |----------|--|--------------------| | 3 (a) | • forward rate = reverse rate (not concentration of reactants and products are equal) | | | | • can be approached from either direction <i>or</i> reversible reaction <i>or</i> (constant) change from reactants to products and vice versa | | | | • no change in overall macroscopic properties (or one specified property, e.g. colour/concentration) or appears to have stopped | | | | • takes place in a closed system . (any two bullet points) 🗸 🗸 | [2] | | (b) | a change in conditions <i>or</i> a disturbance will cause a shift in the (position of) equilibrium | | | *
(c) | in the direction that minimises/opposes/reduces/attempts to balance out/ the effect of the change N.B. do not accept "cancels" or "equals" or "balances" or "restores" without the "attempt" | [2] | | | solution would turn <u>yellow</u> (allow yellow-green) (do not allow this mark if candidate says it goes yellow and then back to green again!) | | | (d) | (increasing/added [H ⁺] pushes) the <u>equilibrium</u> to left hand side or <u>equilibrium</u> shifts to form more HIn ecf ✓ ecf: if candidate states that the colour goes blue, then the first mark is lost, but the second can be awarded for stating that the eqm. goes to the right | [2] | | * | (colour goes from yellow to) green u/c ✓ then to blue (allow blue-green) ✓ (do not allow this mark if candidate says it goes blue and then back to green | | | * | again!) N B. allow e.c.f for both these marks as follows: if candidate has said in (c) that colour goes blue, then these two marks are for (blue to) gree n[1], and yellow(-green) [1] (don't allow "blue" in both!) | | | | OH ⁻ reacts with/removes H ⁺ (or equation) or is a proton acceptor or neutralises the acid N.B. not just "OH- is a base" shifting the equilibrium to the right hand side or equilibrium shifts to form more In ecf | [4]
total
10 | | | (the word "equilibrium" need only appear once in parts (c) and (d) If it is omitted from both (c) and (d), deduct [1] only. If it is omitted from only one part, allow full marks (as long as the chemistry is correct!)) | | | Question | Expected Answers | Marks | |----------|---|----------------| | 4 (a) | a strong acid is completely ionised/dissociated (to H ⁺ (aq)) or gives 1 mol of H ⁺ (aq) for each 1 mol of HA a weak acid is incompletely ionised/dissociated (NOT unionised) or gives less than 1 mol of H ⁺ (aq) for each 1 mol of HA ✓ | [2] | | | N B. if neither of the above two marks can be awarded, you can award [1] for the statement that "strong acids donate protons/H+ more readily than weak acids | [1] | | (b) (i) | $CaCO_3 + 2HA \longrightarrow CaA_2 + H_2O + CO_2$ or $CaCO_3 + 2H^+ \longrightarrow Ca^{2+} + H_2O + CO_2$ or $CO_3^{2-} + 2H^+ \longrightarrow H_2O + CO_2$ | | | (ii) | (average) energy/speed/movement of molecules/particles increases with temperature more (molecules) have E > E_a (at higher T) or have enough energy to react N.B. do not allow this point if candidate has stated that the E_a decreases with temperature activation energy is the minimum energy molecules need in order to react collision rate or number of collisions increases (with T) | [3]
total 6 | | | $N.B.$ the first two bullet points could be read into two labelled Boltzmann distribution curves, showing E_a | | | Question | Expected Answers | Marks | |-----------|---|--------------| | 5 (a) (i) | the energy/enthalpy/heat required to break 1 mole of bonds or a bond per molecule in 1 mole N.B. do not allow "(energy needed to break the bonds in) 1 mole of compound" | [2] | | (ii) | $^{1}/_{4}CH_{4}(g) \longrightarrow ^{1}/_{4}C + H$ (i.e balanced for 1 mol of H) $\checkmark \checkmark \checkmark$ If the above three marks cannot be awarded (this is more than likely!), allow the | | | | following: Any equation with CH₄(g) on the left hand side | | | | Any equation showing the breaking of a CH bond, e.g. C + 4H or CH ₃ + H on the right hand side | [3] | | (b) | total BE on left = $2(C-C) + 8(C-H) + 5(O=O) = +6488 \text{ kJ}$
total BE on right = $6(C=O) + 8(O-H) = +8542 \text{ kJ}$
N.B. if neither of these two marks can be awarded, you could award [1] if all of | | | | the correct multipliers (2, 8, 5, 6, 8) have been used. $\Delta H = 6488-8542 = -2054 \text{ (kJ mol}^{-1}\text{)} \qquad \checkmark \text{ ecf}$ ([3] for correct ans) (ecf: award the mark for correctly taking their total BE on right from their total | [3] | | (c) (i) | BE on left. Not vice versa. If you cannot clearly see which is BE on right and which is BE on left, don't award this mark) | | | | either: average bond energies are not applicable to particular bonds or. ΔH _c is for H ₂ O(I), whereas bond energies are for gases N.B. ingore any ref. to changes in conditions/temperature etc. | [1] | | (ii) | -4200 | | | | $\Delta H_c/kJ$ mol ⁻¹ | | | | 2200 | | | * | 3 4 5 6 | [1] | | (iii) | number of carbon atoms plotting of points and a straight line ✓ | [1] | | (iv) | -3450 to -3550 (kJ mol ⁻¹) (ignore absence of sign, but do not allow +) ✓ (allow e.c.f correct interpretation of incorrect graph) | [1] | | | Successive members/molecules/compounds/formulae increase by a regular/fixed/the same amount (of C and/or H) <i>or</i> by a CH ₂ group \checkmark | 12 max
11 | | Question | Expected Answers | Marks | |----------|---|--------------------| | 6 (a) | mention of two of the following as pollutants, or as products of combustion or as being present in exhaust gases: carbon monoxide, nitrogen monoxide, nitrogen dioxide, unburned hydrocarbons (ignore any ref to sulphur compounds) heterogeneous (catalysis) (not heterolytic!) needs a high temperature (reactants) adsorbed onto the catalyst's surface weakly/temporarily bonded to the catalyst bonds in reactants are weakened (products easily) desorbed after reaction or lost/released from surface description of how one of the pollutants undergoes transformation into harmless products, e.g. CO + NO — CO₂ + ½N₂ (or 2CO + O₂ — 2CO₂ or 2NO — N₂ + O₂ or h/c + O₂ — CO₂ + H₂O) (or in words - equation does not need to be balanced) any five bullet points ✓ ✓ ✓ ✓ Q of WC: Look for two things here; the overall account must read clearly, and make sense grammatically (ignore spellings), and in addition at least one of the following words should be used correctly in a suitable context: heterogeneous, catalyst, adsorption, desorption., oxidation, reduction | [6] | | (b) | Indicate this mark as Q √ | | | | • Haber process converts nitrogen/N ₂ (from the air hence cheap and plentiful) into ammonia/NH ₃ or in an (unbalance) equation | | | | ammonia is usedas a refrigerant | | | | and to make fertilizers such as ammonia itself, ammonium sulphate or other ammonium salt or urea etc. which are needed for more crops/food),. | | | | and nitric acid, which is used to make explosives or a named N-containing explosive, polyamides/nylon, dyes etc. any 4 bullet points | [4]
total
10 | | | | |