| Mark        | Unit Code | Session | Year | Version |
|-------------|-----------|---------|------|---------|
| Scheme      |           | ·       |      | ,       |
| Page 1 of 5 | 2813/01   | June    | 2002 | final   |



Subject: How Far, How Fast?

Code: 2813/01

Session: June

Year: 2002

**Final Mark Scheme** 

**MAXIMUM MARK** 

45

| Mark        | Unit Code | Session | Year | Version |
|-------------|-----------|---------|------|---------|
| Scheme      |           |         | -    |         |
| Page 3 of 5 | 2813/01   | June    | 2002 | final   |

| Abbreviations,<br>annotations and<br>conventions used in<br>the Mark Scheme | <ul> <li>alternative and acceptable answers for the same marking point</li> <li>separates marking points</li> <li>IOT = answers which are not worthy of credit</li> <li>words which are not essential to gain credit</li> <li>(underlining) key words which must be used to gain credit</li> </ul> |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                             | cf = error carried forward  \W = alternative wording  ra = or reverse argument                                                                                                                                                                                                                     |

1 (a)  $E = -(31.9-18.0) \times 4.18 \times 100$   $\checkmark$  E = (-)5810 J  $\checkmark$  [3] [2] (allow 2905 for [1] mark, also allow 5.81 J for [1])  $\checkmark$  [1]

(c)  $-5810/(0.1 \times 1000) = -58.1 \text{ kJ mol}^{-1}$   $\checkmark$  (sign, u/c)  $\checkmark$  ecf [4] [2] (allow ecf for (ans to (a))/(ans to (b) x 1000), allow sign mark even if value is wrong)

Total: 5

(marks for  $E_a$  and  $\Delta H$  are for label + arrow. Allow double-headed arrows *or* lines. Last mark is for products being higher than reactants. If arrow is single-headed its direction must be consistent with height of products (i.e. in the exo or endothermic direction))

(b) (high T) speeds up reaction or (gives energy to) overcome activation energy or provides energy to break bonds or reaction has a big E<sub>a</sub>.
 and (gives the energy needed to carry out the) endothermic reaction or reaction takes in heat

(c)  $\Delta H = 82 - 178 = -96 \text{ kJ mol}^{-1}$   $\checkmark$  (sign)  $\checkmark$  [2] (allow [1] only for +96 or 96 or ±260, sign mark is conditional on 96 being correct)

Total: 7

[2]

| Mark                  | Unit Code | Session | Year | Version |
|-----------------------|-----------|---------|------|---------|
| Scheme<br>Page 4 of 5 | 2813/01   | June    | 2002 | final   |

- 3 (a) (i) reaction 3.1: 413 432 = -19 (kJ mol<sup>-1</sup>)  $\checkmark$  reaction 3.2: 243 327 = -84 (kJ mol<sup>-1</sup>)  $\checkmark$  [2] (if both signs are wrong, i.e. +19 and +84, penalise once only, and award [1])
  - (ii) reaction 3.2 is faster, because weaker bonds are being broken or lower likely E<sub>act</sub> or less energy needed ✓ [1]
  - (b) for reaction 3.3: a comparison of E(C-Cl) with either E(C-H) or E(H-Cl)

    or a calculation, e.g. ΔH = 413 327 = +86

    (the reaction is) is too endothermic (to take place) or it has a highly positive ΔH

    or too high an E<sub>a</sub> or too much energy is needed

    Total: 5
- 4 (a)  $C_8H_{18} + 12.5O_2 \longrightarrow 8CO_2 + 9H_2O$  (or doubled)

| (b) (i) $+$ (ii) |                                    |                                             | <b>√√√</b> [4]                        |
|------------------|------------------------------------|---------------------------------------------|---------------------------------------|
| fuel             | ΔH <sub>c</sub> per mole of alkane | ΔH <sub>c</sub> per mole of CO <sub>2</sub> | moles of CO <sub>2</sub> produced per |
|                  | burned (kJ mol <sup>-1</sup> )     | produced (kJ)                               | kJ of heat given out                  |
| methane          | -890                               | -890                                        | $1.1 - 1.15 \times 10^3$ (a)          |
|                  |                                    |                                             | ecf                                   |
| octane           | -5479                              | -684 to -685                                | 1.4 – 1.5 x 10 <sup>-3</sup>          |
|                  |                                    | ecf from incorrectly                        | (b) ecf                               |
|                  |                                    | balanced equation                           | (needs a calc not just a ratio)       |

- (iii) ratio ( = 1.124/1.462) = 0.7 0.8  $\checkmark$  ecf, i.e. any (a)/(b) [1] (allow a whole number fraction)
- (c) (i) unburned h/c low-level ozone or smog or greenhouse gas or carcinogenic NOT ozone depletion, smoke, pollution, sootiness etc poisonous/toxic (to animals ignore refs to trees etc) or reacts with haemoglobin

(mention of greenhouse gas or acid rain or ozone depletion **negates** any valid CO effect mentioned)

NO smog or acid rain or bad for lungs or causes respiratory problems

or irritant NOT poisonous. (Ignore ozone depletion)  $\checkmark\checkmark\checkmark$  [3]

- (ii) from the combination of  $N_2$  and  $O_2$  (from the air) (or equation)
- (iii) NO + CO  $\longrightarrow \frac{1}{2}N_2 + CO_2$  (or double)
- (iv) Pt or Pd or Rh or all (any other metal negates the mark) ✓ [1]
- (v) in a different phase/state (to the reactants) or a solid reacting with gases ✓ [1]
- (vi) rate of reaction is increased the hotter it is or more molecules with E > E<sub>a</sub> or more energy available to break bonds or more energy available to overcome activation
   (barrier) or increased collision rate

Total: 14

| Mark        | Unit Code | Session | Year | Version |
|-------------|-----------|---------|------|---------|
| Scheme      |           |         |      |         |
| Page 5 of 5 | 2813/01   | June    | 2002 | final   |

| 5 | (a) pressure increases the rate of reaction because the molecules are pushed closer together or become more cond or collide more often or more collisions (NOT because they are travelling faster or have more energy – mention of |                                              |                                                                                                                                                | of eith <b>er</b> |                                       |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------|
|   |                                                                                                                                                                                                                                    | of these <b>negates</b> any correct comment) |                                                                                                                                                |                   | [2]                                   |
|   | (b)                                                                                                                                                                                                                                | (i)                                          | (increasing T will) increase yield <i>or</i> drive equilibrium over to right <i>or</i> favour the forward reaction                             | ✓                 | d.                                    |
|   |                                                                                                                                                                                                                                    |                                              | because it's an endothermic reaction or $\Delta H$ is positive                                                                                 | ✓                 | [2]                                   |
|   |                                                                                                                                                                                                                                    | (ii)                                         | (increasing P will) decrease yield <i>or</i> drive equilibrium over to left <i>or</i> favour the backward reaction                             | ✓                 | · · · · · · · · · · · · · · · · · · · |
|   |                                                                                                                                                                                                                                    |                                              | because there are more (gas) moles on the right than the left.                                                                                 | ✓                 | [2]                                   |
|   | (c)                                                                                                                                                                                                                                |                                              | each reaction requires different conditions of temperature or press reaction use different catalysts (N.B. not just unspecified "different con |                   |                                       |
|   |                                                                                                                                                                                                                                    |                                              |                                                                                                                                                |                   | Total: <b>7</b>                       |
| 6 | acid = contains H <sup>+</sup> or proton donor or $\rightarrow$ H <sup>+</sup> in an equation or an electron pair acceptor $\checkmark$                                                                                            |                                              |                                                                                                                                                |                   |                                       |

acid = contains  $H^+$  or proton donor  $or \to H^+$  in an equation or an electron pair acceptor

4 main reactions:

HCl(aq) + metal (from Ca to Fe in reactivity)

HCl(aq) + (insoluble) metal oxide

HCl(aq) + soluble metal hydroxide or ammonia

HCl(aq) + carbonate (any one - allow hydrogencarbonate too)

also allow:

HCl(aq) + an alcohol + ZnCl<sub>2</sub>, giving a chloroalkane

an example of each to include the name or correct formula of reactant (can be read into an and a description of the observation (if none of these 3 marks has been awarded there are 2 ways in which a salvage mark may be given for stating 3 correct reagents but no observations or for stating the 3 general (word) equations for acid reactions]

observations: *metal* dissolves or H<sub>2</sub> evolved or gas evolved/produced/formed or fizzes (in words, not to be read from  $H_2(g)$  in the equation) carbonate dissolves or CO2 evolved or gas evolved or fizzes (in words, not to be read from  $CO_2(g)$  in the equation)

metal oxide dissolves

soluble hydroxide heats up or changes the colour of an indicator

(for any metal that gives coloured salts, allow the correct colour of the solution as an observation) solution (of alcohol) turns cloudy also allow:

balanced chemical equations (any two from the five reaction types above) [for reactive metals, e.g. Na, allow [1] for balanced equation, but not the observation mark]

ionic equations (any two) [these must not include any spectator ions]

[8] max [6]

QWC (two informative sentences)

Total: 7