Final Mark Scheme 2823/01		Jan	January 2004	
1. (a) (i)	$m{i}$ correctly labelled between incident ray and normal	B1	[1]	
(ii)	refracted ray correctly drawn bending towards the norr	mal B1	[1]	
(b) (i)	recall of R.I = c_i / c_r OR 3.0 x 10 ⁸ / 1.9 x 10 ⁸ = 1.58 (OR 1.6)	C1 A1	[2]	
` ,	recall of R. I. = sin i/sinr sini = sin35 ⁰ x 1.58 \Rightarrow hence $i = 65^{\circ}$ (64.9 to 67) flow ecf for second mark if value of n is less than 1}	C1 A1	[2]	
(***		TOTAL =	6	
2. (a) {do not a	angle (of incidence) must be greater than critical angle light must be directed from dense to less dense mediuallow" incident ray > C" }	•	[2]	
(b) (i)	RI = 1/sinC (OR sinC = 1/1.01) C = 820 { allow 81o}	C1 A1	[2]	
(ii)	less multipath dispersion (WTTE) because (virtually) all the rays follows same path (WTT most of the light escapes by refraction	В1 ГЕ) В1 В1 В1	[4]	
		TOTAL =	8	

3. (a) (i)	 any 3 from reflection, TIR, refraction, diffraction, interference {also allow energy transfer, superposition, creation of standing but do not allow v=fλ, progressive waves} 		B1+B1+B1 [3] waves	
(ii)	polarisation	B1	[1]	
(b) (i)	frequency = number of vibrations/waves/oscillations/cycles per sea {reject f=1/period unless period defined} wavelength = distance between neighbouring corresponding	ec B1		
	pts {Allow "crest to crest" "trough to trough" or labelled diagram or length of 1 cycle of the wave}	B1	[2]	
(c)	in one second f waves are produced each of length λ distance travelled in one second is therefore $f\lambda$ OR (hence) $v = f\lambda$ OR speed = dist/time = λ/T and $T = 1/f$ hence $v = f\lambda$ {reject consistency of units approach}	B1 B1 B1 B1	[2]	
(d) (i)	period = 1/500 = 0.002s (or 2ms)	B1	[1]	
(ii)	at least 2 full (sine) waves of constant period (+/- 2mm) of amplitude 3 cm (+/- 2mm in both directions) correct 'period' of 4 cm (+/- 2mm throughout)	B1 B1 B1	[3]	
(iii)	correct substitution into v=f λ : e.g. 330 = 500 λ λ = 0.66 m {do not allow 0.6 but allow 0.7}	C1 A1	[2]	
	Т	OTAL	= 14	

4. ((a)	similarity: any valid point e.g. (both have) vibrations, frequency wavelength, period, displacement (not velocity) difference:	y, amplitu B1	de,
		e.g. no energy transfer for standing waves neighbouring points vibrate in phase for standing waves only standing waves have nodes and antinodes {allow standing waves are "trapped"/fixed/confined/don't move	B1	[2]
			ioiwaiu	
(b) (i)	arrows show vertical oscillations maximum amplitude at top {allow ecf for horiz.} less in middle AND very small (or zero) at base	B1 B1	F01
		{allow 1 mark only for unlabelled diagram showing representat {2 marks for unlabelled diagram plus an arrow} {allow single headed arrows}	B1 ion of am	[3] iplitude}
	(ii)	wavelength = $4 \times 0.36 = 1.44$ m	B1	[1]
	(iii)	recall of $v = f \lambda$	B1	
		$f = v/\lambda = 330/1.44$ (allow ecf) = 229 (or 230) Hz	B1	[2]
	(iv)	if open at both ends each end must be an antinode OR diagrar hence wavelength = 0.72m {allow ecf}		
		and frequency = 458 (or 460) Hz {allow ecf}	C1 A1	[3]
			TOTAL :	= 11
5. (a) (i)	a progressive wave transfers energy (WTTE) {allow "wave profile moves through space" OR crest/troughs medium}		
		{allow "waves that move from one place to another" but not "wa	aves mov	e"}
	(ii)	longitudinal: vibrations/motions PARALLEL (to wave direction) {allow back and forth}	B1	
		transverse: vibrations/motions PERPENDICULAR (to wave direction) -	B1	[2]
(b))	a straight object vibrated in the water (WTTE)	B1	
		REDUCE FREQUENCY of wave source {allow 'increase the depth of the water'}	B1	
		REDUCE DEPTH of water in the tank	B1	[3]
		T	OTAL =	6