

OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced Subsidiary GCE

PHYSICS A

2823/01

Wave Properties

Wednesday

12 JANUARY 2005

Morning

45 minutes

Candidates answer on the question paper. Additional materials: Electronic calculator

Candidate Name	С	entr	e Nı	umb	er	Canc Nun	

TIME 45 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You may use an electronic calculator.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE						
Qu	Max.	Mark				
1	6					
2	6					
3	7					
4	15					
5	11					
TOTAL	45					

This question paper consists of 10 printed pages and 2 blank pages.

Data

speed of light in free space,	$c = 3.00 \times 10^8 \mathrm{ms^{-1}}$
permeability of free space,	$\mu_0 = 4\pi \times 10^{-7} \mathrm{Hm^{-1}}$
permittivity of free space,	$\epsilon_0 = 8.85 \times 10^{-12} \mathrm{F m^{-1}}$
elementary charge,	$e = 1.60 \times 10^{-19} \mathrm{C}$
the Planck constant,	$h = 6.63 \times 10^{-34} \mathrm{Js}$
unified atomic mass constant,	$u = 1.66 \times 10^{-27} \text{ kg}$
rest mass of electron,	$m_{\rm e} = 9.11 \times 10^{-31} \rm kg$
rest mass of proton,	$m_{\rm p} = 1.67 \times 10^{-27} \rm kg$
molar gas constant,	$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
the Avogadro constant,	$N_{\rm A} = 6.02 \times 10^{23} {\rm mol}^{-1}$
gravitational constant,	$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
acceleration of free fall,	$g = 9.81 \text{ m s}^{-2}$

Formulae

$$s = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$

$$n = \frac{1}{\sin C}$$

$$\frac{1}{C}=\frac{1}{C_1}+\frac{1}{C_2}+\ldots$$

capacitors in parallel,

$$C = C_1 + C_2 + \dots$$

capacitor discharge,

$$x = x_0 e^{-t/CR}$$

pressure of an ideal gas,

$$p = \frac{1}{3} \frac{Nm}{V} < c^2 >$$

radioactive decay,

$$x = x_0 e^{-\lambda t}$$

$$t_{\frac{1}{2}} = \frac{0.693}{\lambda}$$

critical density of matter in the Universe,

$$\rho_0 = \frac{3H_0^2}{8\pi G}$$

relativity factor,

$$=\sqrt{(1-\frac{v^2}{c^2})}$$

current,

$$I = nAve$$

nuclear radius,

$$r = r_0 A^{1/3}$$

sound intensity level,

$$= 10 \lg \left(\frac{I}{I_0} \right)$$

Answer all the questions.

1	(a)	The	e refractive index n of a transparent medium is defined $oldsymbol{c}_{\!\scriptscriptstyle i}$	by the equation
			$n=\frac{c_{\rm i}}{c_{\rm r}}.$	
		Sta	ate the meaning of the symbols $c_{\rm i}$ and $c_{ m r}$.	
		<i>c</i> _i		
		$c_{\rm r}$.		[2]
	(b)		e refractive index of glycerol is 1.47. Calculate the angle light	of refraction r in the glycerol
		(i)	at an angle of incidence of 50°	
		(ii)	at an angle of incidence of 0°.	r=°
				r =° [4]
				[Total: 6]

2	(a)	Describe, using fully labelled diagrams, what is meant by			
		(i)	critical angle		
				[2]	
		(ii)	total internal reflection.		
				[2]	
	(b)		refractive index of ruby is 1.76. rface.	Calculate the critical angle C for an air/ruby	
				C =° [2]	
				[Total: 6]	

3	(a)	Stat	e an example of			
		(i)	a transverse wave			
				•••••••••••••••••••••••••••••••••••••••		[1]
		(ii)	a longitudinal wave.			
						[1]
	(b)	Вуг	eferring to the nature of	the vibrations involve	d, describe what is m	neant by
		(i)	a transverse wave			
				***************************************	••••••	
				•••••••••••••••••		[1]
		(ii)	a longitudinal wave.			
				••••••	••••••	
				••••••		[1]
	(c)	asso	e yes or no in the spa ociated with transverse ady been completed.	aces of the table bel and/or longitudinal v	ow to indicate the v vaves. The first row	vave phenomena in the table has
			ady seen completed.	*** **********************************		
			wave phenomenon	transverse waves	longitudinal waves	
			reflection	YES	YES	
			refraction			
			diffraction			
			polarisation			[3]
						[Tatal: 7]

[Total: 7]

4 Fig. 4.1 shows, at a given instant, the surface of the water in a ripple tank when plane water waves are travelling from left to right.

Fig. 4.1

- (a) Show on Fig. 4.1
 - (i) the amplitude of the wave label this A

[1]

(ii) the wavelength – label this λ .

[1]

- (b) On Fig. 4.1
 - (i) draw the position of the wave a short time, about one-tenth of a period, later [2]
 - (ii) draw arrows to show the directions in which the particles at **Q** and **S** are moving during this short time. [2]
- (c) State the phase difference between the movement of particles at P and Q.

phase difference = [1]

- (d) The frequency of the wave is 25 Hz and the distance between **P** and **Q** is 1.8 cm. Calculate
 - (i) the period of the wave

period =s [2]

(ii) the speed of the wave.

speed = $m s^{-1}$ [3]

	(e)	(i)	Suggest how the speed of the waves in the ripple tank could be changed.
			[1]
		(ii)	The frequency of the wave source is kept constant and the wave speed is halved. State what change occurs to the wavelength.
			[2]
			[Total: 15]
5	(a)		e the term used to describe two wave sources that have a constant phase rence.
		*****	[1]
	(b)	Usin •	g suitable diagrams, state and explain what is meant by constructive interference destructive interference.
			[4]

[Total: 11]

- (c) Describe an experiment to determine the wavelength of monochromatic light (i.e. light of one wavelength) using a double-slit of known slit separation.

 Include in your answer
 - a labelled diagram showing how the apparatus is arranged
 - a list of the measurements required to determine the wavelength λ of the light
 - the formula, with all symbols identified, that could be used to determine λ .

 [6]

END OF QUESTION PAPER

BLANK PAGE

BLANK PAGE