

Mark Scheme (Results) January 2007

GCE

GCE Mathematics

Core Mathematics C4 (6666)

January 2007 6666 Core Mathematics C4 Mark Scheme

Question Number	Scheme		Marks
1.	** represents a constant $f(x) = (2 - 5x)^{-2} = (2)^{-2} \left(1 - \frac{5x}{2}\right)^{-2} = \frac{1}{4} \left(1 - \frac{5x}{2}\right)^{-2}$	Takes 2 outside the bracket to give any of $(2)^{-2}$ or $\frac{1}{4}$.	B1
	$=\frac{1}{4}\left\{\frac{1+(-2)(^{**}x);+\frac{(-2)(-3)}{2!}(^{**}x)^{2}+\frac{(-2)(-3)(-4)}{3!}(^{**}x)^{3}+\ldots\right\}$	Expands $(1+**x)^{-2}$ to give an unsimplified 1+(-2)(**x); A correct unsimplified $\{\underline{\dots}\}$ expansion with candidate's (**x)	M1 A1
	$=\frac{1}{4}\left\{\frac{1+(-2)(\frac{-5x}{2});+\frac{(-2)(-3)}{2!}(\frac{-5x}{2})^2+\frac{(-2)(-3)(-4)}{3!}(\frac{-5x}{2})^3+\ldots\right\}$		
	$= \frac{1}{4} \left\{ 1 + 5x; + \frac{75x^2}{4} + \frac{125x^3}{2} + \dots \right\}$		
	$= \frac{1}{4} + \frac{5x}{4}; + \frac{75x^2}{16} + \frac{125x^3}{8} + \dots$	Anything that cancels to $\frac{1}{4} + \frac{5x}{4}$; Simplified $\frac{75x^2}{16} + \frac{125x^3}{8}$	A1; A1
	$= \frac{1}{4} + 1\frac{1}{4}x; + 4\frac{11}{16}x^2 + 15\frac{5}{8}x^3 + \dots$		[5]
			5 marks

Aliter 1. $f(x) = (2-5x)^{-2}$ Way 2	
Expands $(2-5x)^{-2}$ to	B1
$= \begin{cases} (2)^{-2} + (-2)(2)^{-3}(**x); + \frac{(-2)(-3)}{2!}(2)^{-4}(**x)^{2} \\ + \frac{(-2)(-3)(-4)}{3!}(2)^{-5}(**x)^{3} + \dots \end{cases}$ $= \begin{cases} (2)^{-2} + (-2)(2)^{-3}(**x); \\ (2)^{-2} + (-2)(2)^{-3}(**x); \\ A \text{ correct unsimplified} \end{cases}$	M1
	A1
$= \left\{ \begin{aligned} (2)^{-2} + (-2)(2)^{-3}(-5x); + & \frac{(-2)(-3)}{2!}(2)^{-4}(-5x)^2 \\ & + & \frac{(-2)(-3)(-4)}{3!}(2)^{-5}(-5x)^3 + \dots \end{aligned} \right\}$	
$= \begin{cases} \frac{1}{4} + (-2)(\frac{1}{8})(-5x); + (3)(\frac{1}{16})(25x^2) \\ + (-4)(\frac{1}{16})(-125x^3) + \dots \end{cases}$	
$=\frac{1}{4}+\frac{3}{4}$; $+\frac{13}{16}+\frac{123}{8}+$	A1; A1
$= \frac{1}{4} + 1\frac{1}{4}x; + 4\frac{11}{16}x^2 + 15\frac{5}{8}x^3 + \dots$	
	[5] 5 marks

Attempts using Maclaurin expansions need to be referred to your team leader.

Question Number	Scheme		Marks
2. (a)	Volume = $\pi \int_{\frac{-1}{4}}^{\frac{1}{2}} \left(\frac{1}{3(1+2x)} \right)^2 dx = \frac{\pi}{9} \int_{\frac{1}{4}}^{\frac{1}{2}} \frac{1}{(1+2x)^2} dx$	Use of $V = \pi \int y^2 dx$. Can be implied. Ignore limits.	B1
	$= \left(\frac{\pi}{9}\right) \int_{-\frac{1}{4}}^{\frac{1}{2}} \left(1 + 2x\right)^{-2} dx$	Moving their power to the top. (Do not allow power of -1.) Can be implied. Ignore limits and $\frac{\pi}{9}$	M1
	$= \left(\frac{\pi}{9}\right) \left[\frac{(1+2x)^{-1}}{(-1)(2)}\right]_{-\frac{1}{4}}^{\frac{1}{2}}$	Integrating to give $\frac{\pm p(1+2x)^{-1}}{-\frac{1}{2}(1+2x)^{-1}}$	M1 A1
	$= \left(\frac{\pi}{9}\right) \left[-\frac{1}{2} (1+2x)^{-1} \right]_{-\frac{1}{4}}^{\frac{1}{2}}$		
	$= \left(\frac{\pi}{9}\right) \left[\left(\frac{-1}{2(2)}\right) - \left(\frac{-1}{2(\frac{1}{2})}\right) \right]$		
	$= \left(\frac{\pi}{9}\right) \left[-\frac{1}{4} - (-1)\right]$		
	$=\frac{\pi}{12}$	Use of limits to give exact values of $\frac{\pi}{12}$ or $\frac{3\pi}{36}$ or $\frac{2\pi}{24}$ or aef	A1 aef
(b)	From Fig.1, AB = $\frac{1}{2} - \left(-\frac{1}{4}\right) = \frac{3}{4}$ units		[5]
	As $\frac{3}{4}$ units \equiv 3cm		
	then scale factor $k = \frac{3}{\left(\frac{3}{4}\right)} = 4$.		
	Hence Volume of paperweight = $(4)^3 \left(\frac{\pi}{12}\right)$	$(4)^3 \times (\text{their answer to part (a)})$	M1
	$V = \frac{16\pi}{3} \text{ cm}^3 = 16.75516 \text{ cm}^3$	$\frac{\frac{16\pi}{3}}{\text{or } \frac{64\pi}{12}} \text{ or aef}$	A1 [2]
			7 marks
	Note : $\frac{\pi}{2}$ (or implied) is not needed for the middle through	as marks of question 2(a)	

Note: $\frac{\pi}{9}$ (or implied) is not needed for the middle three marks of question 2(a).

Question Number	Scheme		Marks
Aliter 2. (a)	Volume = $\pi \int_{\frac{1}{4}}^{\frac{1}{2}} \left(\frac{1}{3(1+2x)} \right)^2 dx = \pi \int_{\frac{1}{4}}^{\frac{1}{2}} \frac{1}{(3+6x)^2} dx$	Use of $V = \pi \int y^2 dx$. Can be implied. Ignore limits.	B1
Way 2	$= (\pi) \int_{\frac{1}{4}}^{\frac{1}{2}} (3+6x)^{-2} dx$	Moving their power to the top. (Do not allow power of -1.) Can be implied. Ignore limits and π	M1
	$= \left(\pi\right) \left[\frac{(3+6x)^{-1}}{(-1)(6)}\right]_{-\frac{1}{4}}^{\frac{1}{2}}$	Integrating to give $\frac{\pm p(3+6x)^{-1}}{-\frac{1}{6}(3+6x)^{-1}}$	M1 A1
	$= \left(\pi\right) \left[\begin{array}{c} -\frac{1}{6} (3+6x)^{-1} \end{array} \right]_{-\frac{1}{4}}^{\frac{1}{2}}$		
	$= \left(\pi\right) \left[\left(\frac{-1}{6(6)}\right) - \left(\frac{-1}{6(\frac{3}{2})}\right) \right]$		
	$= \left(\pi\right) \left[-\frac{1}{36} - \left(-\frac{1}{9}\right) \right]$		
	$=\frac{\pi}{12}$	Use of limits to give exact values of $\frac{\pi}{12}$ or $\frac{3\pi}{36}$ or $\frac{2\pi}{24}$ or aef	A1 aef
			[3]

Note: π is not needed for the middle three marks of question 2(a).

Question	Scheme		Marks
Number 3. (a)	$x = 7 \cos t - \cos 7t$, $y = 7 \sin t - \sin 7t$,		
3. (a)	$\frac{dx}{dt} = -7\sin t + 7\sin 7t, \frac{dy}{dt} = 7\cos t - 7\cos 7t$	Attempt to differentiate x and y with respect to t to give $\frac{dx}{dt}$ in the form $\pm A \sin t \pm B \sin 7t$ $\frac{dy}{dt}$ in the form $\pm C \cos t \pm D \cos 7t$ Correct $\frac{dx}{dt}$ and $\frac{dy}{dt}$	M1
	$\therefore \frac{dy}{dx} = \frac{7\cos t - 7\cos 7t}{-7\sin t + 7\sin 7t}$	Candidate's $\frac{\frac{dy}{dt}}{\frac{dx}{dt}}$	B1 √ [3]
(b)	When $t = \frac{\pi}{6}$, $m(T) = \frac{dy}{dx} = \frac{7\cos\frac{\pi}{6} - 7\cos\frac{7\pi}{6}}{-7\sin\frac{\pi}{6} + 7\sin\frac{7\pi}{6}}$;	Substitutes $t = \frac{\pi}{6}$ or 30° into their $\frac{dy}{dx}$ expression;	M1
	$= \frac{\frac{7\sqrt{3}}{2} - \left(-\frac{7\sqrt{3}}{2}\right)}{\frac{-\frac{7}{2} - \frac{7}{2}}{2}} = \frac{7\sqrt{3}}{\frac{-7}{2}} = \frac{-\sqrt{3}}{2} = \underbrace{-awrt - 1.73}$	to give any of the four underlined expressions oe (must be correct solution only)	A1 cso
	Hence $m(\mathbf{N}) = \frac{-1}{-\sqrt{3}}$ or $\frac{1}{\sqrt{3}} = \text{awrt } 0.58$	Uses m(T) to 'correctly' find m(N). Can be ft from "their tangent gradient".	A1√ oe.
	When $t = \frac{\pi}{6}$, $x = 7\cos\frac{\pi}{6} - \cos\frac{7\pi}{6} = \frac{7\sqrt{3}}{2} - \left(-\frac{\sqrt{3}}{2}\right) = \frac{8\sqrt{3}}{2} = 4\sqrt{3}$ $y = 7\sin\frac{\pi}{6} - \sin\frac{7\pi}{6} = \frac{7}{2} - \left(-\frac{1}{2}\right) = \frac{8}{2} = 4$	The point $(4\sqrt{3}, 4)$ or $(awrt 6.9, 4)$	B1
	N : $y-4=\frac{1}{\sqrt{3}}(x-4\sqrt{3})$	Finding an equation of a normal with their point and their normal gradient or finds c by using y = (their gradient)x + "c".	M1
	N: $\underline{y = \frac{1}{\sqrt{3}}x}$ or $\underline{y = \frac{\sqrt{3}}{3}x}$ or $\underline{3y} = \sqrt{3}x$	Correct simplified EXACT equation of <u>normal</u> . This is dependent on candidate using correct $(4\sqrt{3}, 4)$	<u>A1</u> oe
	or $4 = \frac{1}{\sqrt{3}} (4\sqrt{3}) + c \implies c = 4 - 4 = 0$		
	Hence N: $y = \frac{1}{\sqrt{3}}x$ or $y = \frac{\sqrt{3}}{3}x$ or $y = \sqrt{3}x$		
			[6] 9 marks

Question Number	Scheme		Marks
Aliter			
3. (a)	$x = 7\cos t - \cos 7t$, $y = 7\sin t - \sin 7t$,		
Way 2		Attempt to differentiate x and y with respect to t to give $\frac{dx}{dt}$ in the	
	$\frac{dx}{dt} = -7 \sin t + 7 \sin 7t$, $\frac{dy}{dt} = 7 \cos t - 7 \cos 7t$	form±Asint ± Bsin7t	M1
	dt dt	$\frac{dy}{dt}$ in the form $\pm C \cos t \pm D \cos 7t$	
		Correct $\frac{dx}{dt}$ and $\frac{dy}{dt}$	A1
	$\frac{dy}{dx} = \frac{7\cos t - 7\cos 7t}{-7\sin t + 7\sin 7t} = \frac{-7(-2\sin 4t\sin 3t)}{-7(2\cos 4t\sin 3t)} = \tan 4t$	Candidate's $\frac{\frac{dy}{dt}}{\frac{dx}{dx}}$	B1 √
	ux = 7 3 11 7 7 3 11 7 1 - 7 (2003 4 5 3 11 5 t)	dt	[3]
			[5]
(b)	π dy 45	Substitutes $t = \frac{\pi}{6}$ or 30° into their	
	When $t = \frac{\pi}{6}$, $m(T) = \frac{dy}{dx} = \tan \frac{4\pi}{6}$;	$\frac{dy}{dx}$ expression;	M1
	2(13)(4)		
	$=\frac{2\left(\frac{\sqrt{3}}{2}\right)(1)}{2\left(-\frac{1}{2}\right)(1)}=\frac{-\sqrt{3}}{2}=\frac{\text{awrt }-1.73}{2}$	to give any of the three underlined expressions oe	A1 cso
	$\frac{2(-\frac{1}{2})(1)}{}$	(must be correct solution only)	
	Hence $m(\mathbf{N}) = \frac{-1}{-\sqrt{3}}$ or $\frac{1}{\sqrt{3}}$ = awrt 0.58	Uses $m(\mathbf{T})$ to 'correctly' find $m(\mathbf{N})$. Can be ft from "their	A1√ oe.
	Thence $M(1) = \frac{1}{-\sqrt{3}}$ of $\frac{1}{\sqrt{3}}$ and $\frac{1}{\sqrt{3}}$	tangent gradient".	Aly be.
	XXII		
	When $t = \frac{\pi}{6}$,	The point $(4\sqrt{3}, 4)$	
	$x = 7\cos\frac{\pi}{6} - \cos\frac{7\pi}{6} = \frac{7\sqrt{3}}{2} - \left(-\frac{\sqrt{3}}{2}\right) = \frac{8\sqrt{3}}{2} = 4\sqrt{3}$	The point $(4\sqrt{3}, 4)$ or $(awrt 6.9, 4)$	B1
	$y = 7\sin\frac{\pi}{6} - \sin\frac{7\pi}{6} = \frac{7}{2} - \left(-\frac{1}{2}\right) = \frac{8}{2} = 4$	<u>(a e.e, 1)</u>	
		Finding an equation of a normal	
	N. v. 4 1 (v. 4/2)	with their point and their normal	M1
	N : $y-4=\frac{1}{\sqrt{3}}(x-4\sqrt{3})$	gradient or finds c by using	
		y = (their gradient)x + "c".	
		Correct simplified	
	No v 1 v or $\sqrt{3}$ v or $3v \sqrt{3}$ v	EXACT equation of <u>normal</u> .	<u>A1</u> oe
	N: $\underline{y = \frac{1}{\sqrt{3}}x}$ or $\underline{y = \frac{\sqrt{3}}{3}x}$ or $\underline{3y} = \sqrt{3x}$	This is dependent on candidate	
		using correct $(4\sqrt{3}, 4)$	
	- 1 (4 <u>5</u>) 4 4 5		
	or $4 = \frac{1}{\sqrt{3}} (4\sqrt{3}) + c \implies c = 4 - 4 = 0$		
	Hence N: $y = \frac{1}{\sqrt{3}}x$ or $y = \frac{\sqrt{3}}{3}x$ or $y = \sqrt{3}x$		
	$\frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} $		[4]
			[6] 9 marks
			×

Beware: A candidate finding an m(T)=0 can obtain A1ft for $m(N)\to\infty$, but obtains M0 if they write $y-4=\infty(x-4\sqrt{3})$. If they write, however, N: $x=4\sqrt{3}$, then they can score M1.

Beware: A candidate finding an $m(T) = \infty$ can obtain A1ft for m(N) = 0, and also obtains M1 if they write $y - 4 = 0(x - 4\sqrt{3})$ or y = 4.

Question Number	Scheme		Marks
4. (a)	$\frac{2x-1}{(x-1)(2x-3)} \equiv \frac{A}{(x-1)} + \frac{B}{(2x-3)}$		
	$2x-1 \equiv A(2x-3) + B(x-1)$	Forming this identity. NB : A & B are not assigned in this question	M1
	Let $x = \frac{3}{2}$, $2 = B(\frac{1}{2}) \Rightarrow B = 4$		
	Let $x = 1$, $1 = A(-1) \Rightarrow A = -1$	either one of $A = -1$ or $B = 4$. both correct for their A, B.	A1 A1
	giving $\frac{-1}{(x-1)} + \frac{4}{(2x-3)}$		[3]
	adv (2v 1)		[0]
(b) & (c)	$\int \frac{dy}{y} = \int \frac{(2x-1)}{(2x-3)(x-1)} dx$ $= \int \frac{-1}{(x-1)} + \frac{4}{(2x-3)} dx$	Separates variables as shown Can be implied	B1
	$= \int \frac{-1}{(x-1)} + \frac{4}{(2x-3)} dx$	Replaces RHS with their partial fraction to be integrated.	M1√
	$\therefore \ln y = -\ln(x-1) + 2\ln(2x-3) + c$	At least two terms in ln's At least two ln terms correct All three terms correct and '+ c'	M1 A1 √ A1 [5]
	y = 10, x = 2 gives $c = ln10$	c = In10	B1
	$\therefore \ln y = -\ln(x-1) + 2\ln(2x-3) + \ln 10$		
	$ln y = -ln(x-1) + ln(2x-3)^2 + ln10$	Using the power law for logarithms	M1
	$\ln y = \ln \left(\frac{(2x-3)^2}{(x-1)} \right) + \ln 10 \text{ or}$ $\ln y = \ln \left(\frac{10(2x-3)^2}{(x-1)} \right)$	Using the product and/or quotient laws for logarithms to obtain a single RHS logarithmic term with/without constant c.	M1
	$y = \frac{10(2x-3)^2}{(x-1)}$	$y = \frac{10(2x-3)^2}{(x-1)}$ or aef. isw	A1 aef [4]
			12 marks
			12 marks

Question Number	Scheme		Marks
4. (b) & (c) Way 2	$\int \frac{dy}{y} = \int \frac{(2x-1)}{(2x-3)(x-1)} dx$	Separates variables as shown Can be implied	B1
way 2	$= \int \frac{-1}{(x-1)} + \frac{4}{(2x-3)} dx$	Replaces RHS with their partial fraction to be integrated.	M1√
	$\therefore \ln y = -\ln(x-1) + 2\ln(2x-3) + c$	At least two terms in ln's At least two ln terms correct All three terms correct and '+ c'	M1 A1√ A1
	See below for the award of B1	decide to award B1 here!!	B1
	$ln y = -ln(x-1) + ln(2x-3)^2 + c$	Using the power law for logarithms	M1
	$\ln y = \ln \left(\frac{(2x-3)^2}{x-1} \right) + c$	Using the product and/or quotient laws for logarithms to obtain a single RHS logarithmic term with/without constant c.	M1
	$ln y = ln \left(\frac{A(2x-3)^2}{x-1} \right) \qquad \text{where } c = ln A$		
	or $e^{lny} = e^{ln\left(\frac{(2x-3)^2}{x-1}\right) + c} = e^{ln\left(\frac{(2x-3)^2}{x-1}\right)} e^c$		
	$y = \frac{A(2x-3)^2}{(x-1)}$		
	y = 10, x = 2 gives $A = 10$	A = 10 for $B1$	award above
	$y = \frac{10(2x-3)^2}{(x-1)}$	$y = \frac{10(2x-3)^2}{(x-1)}$ or aef & isw	A1 aef
			[5] & [4]

Note: The B1 mark (part (c)) should be awarded in the same place on ePEN as in the Way 1 approach.

Question Number	Scheme		Marks
(b) & (c)	$\int \frac{dy}{y} = \int \frac{(2x-1)}{(2x-3)(x-1)} dx$	Separates variables as shown Can be implied	B1
Way 3	$= \int \frac{-1}{(x-1)} + \frac{2}{(x-\frac{3}{2})} dx$	Replaces RHS with their partial fraction to be integrated.	M1√
	$\therefore \ln y = -\ln(x-1) + 2\ln(x-\frac{3}{2}) + c$	At least two terms in ln's At least two ln terms correct All three terms correct and '+ c'	M1 A1 √ A1 [5]
	y = 10, x = 2 gives $c = \frac{\ln 10 - 2\ln(\frac{1}{2})}{\ln 40}$	$c = \ln 10 - 2 \ln \left(\frac{1}{2}\right) \text{ or } c = \ln 40$	B1 oe
	$\therefore \ln y = -\ln(x-1) + 2\ln(x-\frac{3}{2}) + \ln 40$		
	$\ln y = -\ln(x-1) + \ln(x-\frac{3}{2})^2 + \ln 10$	Using the power law for logarithms	M1
	$\ln y = \ln \left(\frac{(x - \frac{3}{2})^2}{(x - 1)} \right) + \ln 40 \text{ or}$ $\ln y = \ln \left(\frac{40 (x - \frac{3}{2})^2}{(x - 1)} \right)$	Using the product and/or quotient laws for logarithms to obtain a single RHS logarithmic term with/without constant c.	M1
	$y = \frac{40(x - \frac{3}{2})^2}{(x - 1)}$	$y = \frac{40(x - \frac{3}{2})^2}{(x - 1)}$ or aef. isw	A1 aef [4]

Note: Please mark parts (b) and (c) together for any of the three ways.

Question Number	Scheme		Marks
5. (a)	$\sin x + \cos y = 0.5 \qquad (eqn *)$		
	$\left\{\frac{\cancel{x}\cancel{x}}{\cancel{x}\cancel{x}} \times\right\} \cos x - \sin y \frac{dy}{dx} = 0 \qquad (eqn \#)$	Differentiates implicitly to include $\pm \sin y \frac{dy}{dx}$. (Ignore $\left(\frac{dy}{dx} = \right)$.)	M1
	$\frac{dy}{dx} = \frac{\cos x}{\sin y}$	cos x sin y	A1 cso [2]
(b)	$\frac{dy}{dx} = 0 \implies \frac{\cos x}{\sin y} = 0 \implies \cos x = 0$	Candidate realises that they need to solve 'their numerator' = 0or candidate sets $\frac{dy}{dx} = 0$ in their (eqn #) and attempts to solve the resulting equation.	M1√
	giving $X = -\frac{\pi}{2}$ or $X = \frac{\pi}{2}$	both $\underline{x = -\frac{\pi}{2}}$, $\frac{\pi}{2}$ or $\underline{x = \pm 90^{\circ}}$ or awrt $\underline{x = \pm 1.57}$ required here	A1
	When $x = -\frac{\pi}{2}$, $\sin(-\frac{\pi}{2}) + \cos y = 0.5$ When $x = \frac{\pi}{2}$, $\sin(\frac{\pi}{2}) + \cos y = 0.5$	Substitutes either their $X = \frac{\pi}{2}$ or $X = -\frac{\pi}{2}$ into eqn *	M1
	⇒ $\cos y = 1.5$ ⇒ y has no solutions ⇒ $\cos y = -0.5$ ⇒ $y = \frac{2\pi}{3}$ or $-\frac{2\pi}{3}$	Only one of $y = \frac{2\pi}{3}$ or $\frac{-2\pi}{3}$ or $\frac{120^{\circ}}{}$ or $\frac{-120^{\circ}}{}$ or awrt $\frac{-2.09}{}$ or awrt $\frac{2.09}{}$	A1
	In specified range $(x, y) = \frac{\left(\frac{\pi}{2}, \frac{2\pi}{3}\right)}{2}$ and $\frac{\left(\frac{\pi}{2}, -\frac{2\pi}{3}\right)}{2}$	Only exact coordinates of $\left(\frac{\pi}{2}, \frac{2\pi}{3}\right)$ and $\left(\frac{\pi}{2}, -\frac{2\pi}{3}\right)$	A1
		Do not award this mark if candidate states other	
		coordinates inside the required range.	[5]
			7 marks

Question Number	Scheme		Ma	ırks
6.	$y = 2^x = e^{x \ln 2}$			
(a) Way 1	$\frac{dy}{dx} = \ln 2 \cdot e^{x \ln 2}$ $\frac{dy}{dx} = 1$	ln2.e ^{xln2}	M1	
	Hence $\frac{dy}{dx} = \ln 2 \cdot (2^x) = 2^x \ln 2$ AG	e ^x ln2 AG	A1	cso [2]
Aliter (a) Way 2	$ln y = ln(2^x)$ leads to $ln y = x ln 2$ Takes logs of both sides, the power law of logs	arithms	N // 1	
way 2	$\frac{1}{y} \frac{dy}{dx} = \ln 2$ and differentiates im give		M1	
	Hence $\frac{dy}{dx} = y \ln 2 = 2^x \ln 2$ AG	e ^x ln2 AG	A 1	cso [2]
(b)	$y = 2^{(x^2)}$ $\Rightarrow \frac{dy}{dx} = 2x. \ 2^{(x^2)}.ln2$ 2x or 2x.y.ln2 if y	. 2 ^(x²) .ln2	M1 A1	
	When $x = 2$, $\frac{dy}{dx} = 2(2)2^4 \ln 2$ Substitutes $x = 2$ into which is of the form		M1	
	$\frac{dy}{dx} = \frac{64 \ln 2}{dx} = 44.3614$ 64 ln 2 or	awrt 44.4	A1	r 43
				[4]
			6 m	arks

Question Number	Scheme	Marks
Aliter 6. (b)	$ln y = ln(2^{x^2})$ leads to $ln y = x^2 ln 2$	
Way 2	$\frac{1}{y}\frac{dy}{dx} = 2x.\ln 2$ $\frac{1}{y}\frac{dy}{dx} = Ax.$ $\frac{1}{y}\frac{dy}{dx} = 2x.$	
	When $x = 2$, $\frac{dy}{dx} = 2(2)2^4 \ln 2$ Substitutes $x = 2$ into their which is of the form $\pm k2$ or Ax 2	$2^{(x^2)}$ M1
	$\frac{dy}{dx} = \frac{64 \ln 2}{1} = 44.3614$ 64 ln 2 or awrt 4	14.4 A1 [4]

Question Number	Scheme	Marks
7. (a)	$\mathbf{a} = \overrightarrow{OA} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k} \Rightarrow \overrightarrow{OA} = 3$ $\mathbf{b} = \overrightarrow{OB} = \mathbf{i} + \mathbf{j} - 4\mathbf{k} \Rightarrow \overrightarrow{OB} = \sqrt{18}$ $\overrightarrow{BC} = \pm (2\mathbf{i} + 2\mathbf{j} + \mathbf{k}) \Rightarrow \overrightarrow{BC} = 3$ $\overrightarrow{AC} = \pm (\mathbf{i} + \mathbf{j} - 4\mathbf{k}) \Rightarrow \overrightarrow{AC} = \sqrt{18}$ $\mathbf{c} = \overrightarrow{OC} = 3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}$ $3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}$	B1 cao
(b)	$\overrightarrow{OA} \bullet \overrightarrow{OB} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 1 \\ -4 \end{pmatrix} = 2 + 2 - 4 = 0 \text{or}$	[1]
	$\overrightarrow{BO} \bullet \overrightarrow{BC} = \begin{pmatrix} -1 \\ -1 \\ 4 \end{pmatrix} \bullet \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} = \underbrace{-2 - 2 + 4} = 0$ or An attempt to take the dot product between either \overrightarrow{OA} and \overrightarrow{OB} \overrightarrow{OA} and \overrightarrow{AC} , \overrightarrow{AC} and \overrightarrow{BC} or \overrightarrow{OB} and \overrightarrow{BC} . $\overrightarrow{AC} \bullet \overrightarrow{BC} = \begin{pmatrix} 1 \\ 1 \\ -4 \end{pmatrix} \bullet \begin{pmatrix} 2 \\ 2 \\ 2 \\ 1 \end{pmatrix} = \underbrace{2 + 2 - 4} = 0$ or Showing the result is equal to zero.	<u>M1</u>
	Showing the result is equal to zero. $\overline{AO} \bullet \overline{AC} = \begin{pmatrix} -2 \\ -2 \\ -1 \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 1 \\ -4 \end{pmatrix} = \underline{-2 - 2 + 4} = 0$	A1
	and therefore OA is perpendicular to OB and hence OACB is a rectangle. perpendicular and OACB is a rectangle	A1 cso
	Using distance formula to find either the correct height or width.	M1
	Area = $3 \times \sqrt{18} = 3\sqrt{18} = 9\sqrt{2}$ Multiplying the rectangle's height by its width.	M1
	exact value of $3\sqrt{18}$, $9\sqrt{2}$, $\sqrt{162}$ or aef	A1
(c)	$\overrightarrow{OD} = \mathbf{d} = \frac{1}{2} (3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k})$ $\frac{1}{2} (3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k})$	[6] B1 [1]

Question Number	Scheme		Marks			
(d) Way 1	using dot product formula $\overrightarrow{DA} = \pm \left(\frac{1}{2}\mathbf{i} + \frac{1}{2}\mathbf{j} + \frac{5}{2}\mathbf{k}\right) & \overrightarrow{DC} = \pm \left(\frac{3}{2}\mathbf{i} + \frac{3}{2}\mathbf{j} - \frac{3}{2}\mathbf{k}\right)$ or $\overrightarrow{BA} = \pm \left(\mathbf{i} + \mathbf{j} + 5\mathbf{k}\right) & \overrightarrow{OC} = \pm \left(3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}\right)$ Identifies a set of two relevant vectors $\overrightarrow{COC} = \pm \left(3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}\right)$ Correct vectors \pm					
Way 1	$\cos D = (\pm) \frac{\begin{pmatrix} 0.5 \\ 0.5 \\ 2.5 \end{pmatrix} \bullet \begin{pmatrix} 1.5 \\ 1.5 \\ -1.5 \end{pmatrix}}{\frac{\sqrt{27}}{2} \cdot \frac{\sqrt{27}}{2}} = (\pm) \frac{\frac{3}{4} + \frac{3}{4} - \frac{15}{4}}{\frac{27}{4}} = (\pm) \frac{\frac{1}{3}}{\frac{27}{4}}$	Applies dot product formula on multiples of these vectors. <u>Correct ft.</u> <u>application of dot product formula</u>				
	$D = \cos^{-1}\left(-\frac{1}{3}\right)$ $D = 109.47122^{\circ}$	Attempts to find the correct angle D rather than 180° – D.	ddM1√			
		109.5° or awrt109° or 1.91°	A1			
(d) Way 2	using dot product formula and direction vectors $d\overrightarrow{BA} = \pm (\mathbf{i} + \mathbf{j} + 5\mathbf{k}) \qquad \& d\overrightarrow{OC} = \pm (\mathbf{i} + \mathbf{j} - \mathbf{k})$	Identifies a set of two direction vectors Correct vectors ±	[6] M1 A1			
way 2	$\cos D = (\pm) \frac{\begin{pmatrix} 1\\1\\-1 \end{pmatrix} \cdot \begin{pmatrix} 1\\1\\5 \end{pmatrix}}{\sqrt{3} \cdot \sqrt{27}} = (\pm) \frac{1+1-5}{\sqrt{3} \cdot \sqrt{27}} = (\pm) \frac{1}{3}$ $D = \cos^{-1} \left(-\frac{1}{3}\right)$	Applies dot product formula on multiples of these vectors. <u>Correct ft.</u> <u>application of dot product formula.</u>	dM1			
		Attempts to find the correct angle D rather than $180^{\circ} - D$.	ddM1√			
	D = 109.47122°	109.5° or awrt109° or 1.91°	A1 [6]			

Question Number	Scheme		Marks		
Aliter (d)	using dot product formula and similar triangles $\overrightarrow{OOA} = (2\mathbf{i} + 2\mathbf{j} + \mathbf{k}) & & \overrightarrow{OOC} = (\mathbf{i} + \mathbf{j} - \mathbf{k})$ Identifies a set of two direction vectors $\overrightarrow{COrrect vectors}$				
Way 3	$\cos\left(\frac{1}{2}D\right) = \frac{\begin{pmatrix} 2\\2\\1 \end{pmatrix} \bullet \begin{pmatrix} 1\\1\\-1 \end{pmatrix}}{\sqrt{9} \cdot \sqrt{3}} = \frac{2+2-1}{\sqrt{9} \cdot \sqrt{3}} = \frac{1}{\sqrt{3}}$	Applies dot product formula on multiples of these vectors. <u>Correct ft.</u> <u>application of dot</u>	dM1		
	$D = 2 \cos^{-1} \left(\frac{1}{\sqrt{3}} \right)$	product formula. Attempts to find the correct angle D by doubling their angle for $\frac{1}{2}D$.	ddM1√		
	D = 109.47122°	109.5° or awrt109° or 1.91°	A1 [6]		
Aliter (d) Way 4	using cosine rule $\overrightarrow{DA} = \frac{1}{2}\mathbf{i} + \frac{1}{2}\mathbf{j} + \frac{5}{2}\mathbf{k} , \overrightarrow{DC} = \frac{3}{2}\mathbf{i} + \frac{3}{2}\mathbf{j} - \frac{3}{2}\mathbf{k} , \overrightarrow{AC} = \mathbf{i} + \mathbf{j} - 4\mathbf{k}$				
Way 4	$\left \overrightarrow{DA} \right = \frac{\sqrt{27}}{2} , \left \overrightarrow{DC} \right = \frac{\sqrt{27}}{2} , \left \overrightarrow{AC} \right = \sqrt{18}$	Attempts to find all the lengths of all three edges of \triangle ADC All Correct	M1		
	$\cos D = \frac{\left(\frac{\sqrt{27}}{2}\right)^{2} + \left(\frac{\sqrt{27}}{2}\right)^{2} - \left(\sqrt{18}\right)^{2}}{2\left(\frac{\sqrt{27}}{2}\right)\left(\frac{\sqrt{27}}{2}\right)} = -\frac{1}{3}$	Using the cosine rule formula with correct 'subtraction'. Correct ft application of the cosine rule	dM1		
	$D = \cos^{-1}\left(-\frac{1}{3}\right)$	Attempts to find the correct angle D rather than $180^{\circ} - D$.	ddM1√		
	D = 109.47122°	109.5° or awrt109° or 1.91°	A1 [6]		

Question Number	Scheme		Marks				
Aliter	using trigonometry on a right angled triangle						
(d)	$\overline{DA} = \frac{1}{2}\mathbf{i} + \frac{1}{2}\mathbf{j} + \frac{5}{2}\mathbf{k} OA = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k} AC = \mathbf{i} + \mathbf{j} - 4\mathbf{k}$						
Way 5	Let X be the midpoint of AC $\sqrt{27}$ $\sqrt{27}$ $\sqrt{27}$ $\sqrt{27}$ $\sqrt{27}$ $\sqrt{27}$ $\sqrt{27}$ $\sqrt{27}$	Attempts to find two out of the three lengths in Δ ADX	M1				
	$\left \overrightarrow{DA} \right = \frac{\sqrt{27}}{2} \; , \left \overrightarrow{DX} \right = \frac{1}{2} \left \overrightarrow{OA} \right = \frac{3}{2} \; , \left \overrightarrow{AX} \right = \frac{1}{2} \left \overrightarrow{AC} \right = \frac{1}{2} \sqrt{18}$						
	(hypotenuse), (adjacent) , (opposite)	Any two correct	A1				
	$\sin(\frac{1}{2}D) = \frac{\frac{\sqrt{18}}{2}}{\frac{\sqrt{27}}{2}}$, $\cos(\frac{1}{2}D) = \frac{\frac{3}{2}}{\frac{\sqrt{27}}{2}}$ or $\tan(\frac{1}{2}D) = \frac{\frac{\sqrt{18}}{2}}{\frac{3}{2}}$	Uses correct sohcahtoa to find $\frac{1}{2}D$	dM1				
	$\frac{\sqrt{27}}{2}$, $\frac{\sqrt{27}}{2}$, $\frac{3}{2}$	Correct ft application of sohcahtoa	A1√				
	eg. $D = 2 \tan^{-1} \left(\frac{\sqrt{18}}{\frac{2}{3}} \right)$	Attempts to find the correct angle D by doubling their angle $for \frac{1}{2}D$.	ddM1√				
	D = 109.47122°	109.5° or awrt109° or 1.91°	A1 [6]				
Aliter (d) Way 6	using trigonometry on a right angled similar triangle OAC						
	$ \overrightarrow{OC} = 3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}$ $ \overrightarrow{OA} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ $ \overrightarrow{AC} = \mathbf{i} + \mathbf{j} - 4\mathbf{k}$ $ \overrightarrow{OC} = \sqrt{27}$, $ \overrightarrow{OA} = 3$, $ \overrightarrow{AC} = \sqrt{18}$ (hypotenuse), (adjacent), (opposite)	Attempts to find two out of the three lengths in ΔOAC	M1				
		Any two correct	A1				
	$\sin(\frac{1}{2}D) = \frac{\sqrt{18}}{\sqrt{27}}$, $\cos(\frac{1}{2}D) = \frac{3}{\sqrt{27}}$ or $\tan(\frac{1}{2}D) = \frac{\sqrt{18}}{3}$	Uses correct sohcahtoa to find ½D Correct ft application	dM1				
		of sohcahtoa	A1√				
	eg. $D = 2 \tan^{-1} \left(\frac{\sqrt{18}}{3} \right)$	Attempts to find the correct angle D by doubling their angle for $\frac{1}{2}D$.	ddM1√				
	D = 109.47122°	109.5° or awrt109° or 1.91°	A1 [6]				

Question Number	Scheme		Marks
Aliter			
7. (b) (i)	$\mathbf{c} = \overrightarrow{OC} = \pm (3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k})$		
	$\overrightarrow{AB} = \pm (-\mathbf{i} - \mathbf{j} - 5\mathbf{k})$		
Way 2	•		
·	$ \overrightarrow{OC} = \sqrt{(3)^2 + (3)^2 + (-3)^2} = \sqrt{(1)^2 + (1)^2 + (-5)^2} = \overrightarrow{AB} $	A complete method of proving that the diagonals are equal.	M1
	$\begin{vmatrix} A_S \end{vmatrix} \overrightarrow{OC} = \overrightarrow{AB} = \sqrt{27}$	Correct result.	A1
	then the diagonals are equal, and OACB is a rectangle.	diagonals are equal and	A1 cso
		OACB is a rectangle	[3]
	$\mathbf{a} = \overrightarrow{OA} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k} \Rightarrow \left \overrightarrow{OA} \right = 3$		
	$\mathbf{b} = \overrightarrow{OB} = \mathbf{i} + \mathbf{j} - 4\mathbf{k} \implies \overrightarrow{OB} = \sqrt{18}$		
	$\overrightarrow{BC} = \pm (2\mathbf{i} + 2\mathbf{j} + \mathbf{k}) \Rightarrow \overrightarrow{BC} = 3$		
	$\overrightarrow{AC} = \pm (\mathbf{i} + \mathbf{j} - 4\mathbf{k}) \Rightarrow \overrightarrow{AC} = \sqrt{18}$		
	$\mathbf{c} = \overrightarrow{OC} = \pm (3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}) \Rightarrow \overrightarrow{OC} = \sqrt{27}$		
	$\overrightarrow{AB} = \pm (-\mathbf{i} - \mathbf{j} - 5\mathbf{k}) \Rightarrow \overrightarrow{AB} = \sqrt{27}$		
Aliter 7. (b) (i)	$(OA)^2 + (AC)^2 = (OC)^2$		
	or $(BC)^2 + (OB)^2 = (OC)^2$		
	or $(OA)^2 + (OB)^2 = (AB)^2$		
	or $(BC)^2 + (AC)^2 = (AB)^2$ or equivalent		
Way 3	$\Rightarrow \ \underline{(3)^2 + (\sqrt{18})^2 = \left(\sqrt{27}\right)^2}$	A complete method of proving that Pythagoras holds using their values.	M1
		Correct result	A1
	and therefore OA is perpendicular to OB	perpendicular and	A1 cso
	or AC is perpendicular to BC and hence OACB is a rectangle.	OACB is a rectangle	
			[3] 14marks

Question Number	Scheme					Marks		
8. (a)				1			1	
	X	0	1	2	3	4	5	
	у	e¹	e^2	$\mathrm{e}^{\sqrt{7}}$	$\mathrm{e}^{\sqrt{10}}$	$\mathrm{e}^{\sqrt{13}}$	e ⁴	
	or y	2.71828	7.38906	14.09403	23.62434	36.80197		
						Either $e^{\sqrt{7}}$, $e^{\sqrt{10}}$ and $e^{\sqrt{13}}$	
							.1, 23.6 and 36.8	
							r e to the power	
							2.65, 3.16, 3.61	
					(01		ecimals and e's)	
							B1	
	All three correct I					B1		
								[2]
(b)							1 .	
	1	(, , , ,	(-	(17)		Outside	brackets $\frac{1}{2} \times 1$	B1;
	$I \approx \frac{1}{2} \times 1; \times \left\{ e^{1} + 2\left(e^{2} + e^{\sqrt{7}} + e^{\sqrt{10}} + e^{\sqrt{13}}\right) + e^{4} \right\} $ $\underline{For structure of trapezium}_{rule} \left\{ \dots \right\};$				_			
					M1			
	<u></u>							
	$ = - \times 221.1332227 = 110.3070113 = 110.0 (481)$					Λ 1		
						A1 cao		
								[3]
								[2]

Beware: In part (b) candidates can add up the individual trapezia:

$$(b) I \approx \tfrac{1}{2}.1 \Big(\underline{e^1 + e^2} \Big) + \tfrac{1}{2}.1 \Big(\underline{e^2 + e^{\sqrt{7}}} \Big) + \tfrac{1}{2}.1 \Big(\underline{e^{\sqrt{7}} + e^{\sqrt{10}}} \Big) + \tfrac{1}{2}.1 \Big(\underline{e^{\sqrt{10}} + e^{\sqrt{13}}} \Big) + \tfrac{1}{2}.1 \Big(\underline{e^{\sqrt{13}} + e^4} \Big)$$

Question Number	Scheme		Marks
	$t = (3x+1)^{\frac{1}{2}} \implies \frac{dt}{dx} = \frac{1}{2} \cdot 3 \cdot (3x+1)^{-\frac{1}{2}}$ A(3x+1)	$1)^{-\frac{1}{2}} \text{ or } t \frac{\mathrm{d}t}{\mathrm{d}x} = A \mathbf{M}$	1 1
(c)	or $t^2 = 3x + 1 \Rightarrow 2t \frac{dt}{dx} = 3$ $\frac{3}{2}(3x + 1)^{-1}$	$ \frac{dx}{dx} = 3 $ or $2t \frac{dt}{dx} = 3$	1
	1 SO — = — — = — — = —	te obtains either in terms of t	
	$\therefore I = \int e^{\sqrt{(3x+1)}} dx = \int e^{t} \frac{dx}{dt} . dt = \int e^{t} . \frac{2t}{3} . dt$ substitution converts:	and moves on to tute this into I to an integral wrt x an integral wrt t.	M1
	$\therefore I = \int \frac{2}{3} t e^{t} dt$	$\int \frac{2}{3} t e^t A$	1
		s limits $x \to t$ so $0 \to 1$ and $5 \to 4$ B	31
	Hence $I = \int_{1}^{4} \frac{2}{3} te^{t} dt$; where $a = 1$, $b = 4$, $k = \frac{2}{3}$		
(d)		any constant for ree marks of this part.	[5]
	$k \int t e^{t} dt = k \left(t e^{t} - \int e^{t} .1 dt \right)$ parts	correct direction.	111
	Coffect e.	xpression with a onstant factor k.	1
	$= k(\underline{te^t - e^t}) + c$	with/without constant factor k	1
	$\therefore \int \frac{2}{3} t e^t dt = \frac{2}{3} \{ (4e^4 - e^4) - (e^1 - e^1) \}$ limits in	es their changed and subtracts oe.	M1 oe
	$=\frac{2}{3}(3e^4)=\underline{2e^4}=109.1963$ either 2	Re ⁴ or awrt 109.2 A	
	Note: dM1 denotes a method mark which is dependent upon the		[5] 5 marks

- Note: dM1 denotes a method mark which is dependent upon the award of the previous method mark
- ddM1 denotes a method mark which is dependent upon the award of the previous two method marks.