GCE

Edexcel GCE
 Pure Mathematics P1 (6671)

Summer 2005
advancing leaming, changing lives
Mark Scheme (Results)

J une 2005
6671 Pure P1
Mark Scheme

10

Question Number	Scheme	Marks
1	(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=6+8 x^{-3}$ or equiv. [M1 is for correct power of x in at least one term, 6 or x^{-3} is sufficient.] (b) $\int y \mathrm{~d} x=\frac{6 x^{2}}{2}+4 x^{-1}+C \quad$ or equiv. [A1: $\left.\frac{6 x^{2}}{2}+C ; \quad \mathrm{A} 1:+4 x^{-1}\right]$	M1 A1 (2) M1 A1A1 (3)
2	(a) $\quad a=-4 \quad$ or $(x-4)^{2}$ $x^{2}-8 x-29 \equiv(x \pm 4)^{2}-16 \quad(-29), \quad b=-45$ [Comparing coefficients: M1 is for $a^{2}+b=-29$, and comparing x coefficient] (b) Method to find x : $[x+" a "=\sqrt{ } \ldots \ldots \ldots$ or x using the quadratic formula $x=4 \pm 3 \sqrt{5} \quad \text { or } \quad c=4, \quad d=3$	B1 M1A1 (3) M1 A1 A1 (3) [6]

7	(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{1 / 2}-6$	M1 A1
	Setting $=0$ and solving , $\begin{equation*} x=4 \tag{} \end{equation*}$	M1 A1 (4)
	(b) $\quad \int\left(2 x^{3 / 2}-6 x+10\right) \mathrm{d} x=\left[\frac{4 x^{5 / 2}}{5}-3 x^{2}+10 x\right]$	M1 A1 A1
	$\left.\begin{array}{cc} {\left[\begin{array}{lll} \frac{4 x^{5 / 2}}{5} & \text { A1, } & -3 x^{2}+10 x \end{array} \quad \text { A1 }\right]} \end{array}\right]\left[\begin{array}{c} {\left[\frac{4 x^{5 / 2}}{5}-3 x^{2}+10 x\right]_{1}^{4}=\left(\frac{4 \times 4^{5 / 2}}{5}-(3 \times 16)+40\right)-\left(\frac{4}{5}-3+10\right)} \end{array}\right.$	M1 A1V
	$(=17.6-7.8=9.8)$ [A1 $\sqrt{ }$ requires 1 and 4 substituted in candidate's 3-termed integrand (unsimplified)]	
	Correct method for finding area under line	M1
	Correct unsimplified form e.g $=\frac{1}{2}(6+2) \times 3 \quad(=12)$	A1
	Area of $R \quad(=12-9.8)=2.2$	${ }_{[12]}^{\text {A1 }}$
	Alt: Working with "line - curve"	
	Area $=\int\left\|\left(-\frac{8}{3}+\frac{14}{3} x-2 x^{\frac{3}{2}}\right)\right\| \mathrm{d} x \quad$ M1A1	
	$=\left[\frac{4 x^{5 / 2}}{5}, \quad \frac{7}{3} x^{2}-\frac{8}{3} x\right] \quad \text { A1 A1 f.t. }$ Use of correct limits, as in main scheme M1A1 f.t. 2.2	

(a) Substitution of $x=3$ in $\mathrm{f}(x) \quad \mathrm{f}(3)=27-117+165-75$

$$
=0, \quad \text { so }(x-3) \text { is a factor of } \mathrm{f}(x)
$$

(b) Finding quadratic factor: $(x-3)\left(x^{2}-10 x+25\right)$

$$
(x-3)(x-5)(x-5)
$$

[S.C.: Allow M1 if just a second linear factor found]
(c) 3 and 5
(d) $\mathrm{f}^{\prime}(x)=3 x^{2}-26 x+55$

$$
\mathrm{f}^{\prime}(3)=27-78+55=4
$$

(e) " $3 x^{2}-26 x+55 "=" 4 "$

$$
3 x^{2}-26 x+51=0 \Rightarrow(3 x-17)(x-3)=0 \text { or } \quad x=\ldots \text {...if using "formula" }
$$

x-coordinate of S is $\frac{17}{3}\left(\frac{34}{6}\right.$ or $5 \frac{2}{3}$ or 5.6 or 5.67$)$

